POJ2243 Knight Moves —— A*算法
题目链接:http://poj.org/problem?id=2243
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 14500 | Accepted: 8108 |
Description
the problem is determining the smallest number of knight moves between two given squares and that, once you have accomplished this, finding the tour would be easy.
Of course you know that it is vice versa. So you offer him to write a program that solves the "difficult" part.
Your job is to write a program that takes two squares a and b as input and then determines the number of knight moves on a shortest route from a to b.
Input
Output
Sample Input
e2 e4
a1 b2
b2 c3
a1 h8
a1 h7
h8 a1
b1 c3
f6 f6
Sample Output
To get from e2 to e4 takes 2 knight moves.
To get from a1 to b2 takes 4 knight moves.
To get from b2 to c3 takes 2 knight moves.
To get from a1 to h8 takes 6 knight moves.
To get from a1 to h7 takes 5 knight moves.
To get from h8 to a1 takes 6 knight moves.
To get from b1 to c3 takes 1 knight moves.
To get from f6 to f6 takes 0 knight moves.
Source
题解:
这题直接用BFS就可以过了。但是想借助这题学一下A*算法(但以下写法好像不是完整的或者说正确的写法,先放一放,以后遇到再深入)。
代码如下:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <queue>
#include <cmath>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = +; struct node
{
int x, y, step;
int g, h, f;
bool operator<(const node&a)const{
return f>a.f;
}
};
bool vis[MAXN][MAXN];
int dir[][] = { {,}, {,-},{-,},{-,-},{,},{,-},{-,},{-,-} }; int gdis(int x_step, int y_step) //直线距离
{
return (int)sqrt(x_step*x_step+y_step*y_step)*+;
} int hdis(node a, node b) //曼哈顿距离
{
return ( abs(a.x-b.x) + abs(a.y-b.y) )*;
} priority_queue<node>que;
int Astar(node st, node en)
{
memset(vis,false,sizeof(vis));
st.step = st.g = st.h = st.f = ;
while(!que.empty()) que.pop();
que.push(st);
vis[st.x][st.y] = true; while(!que.empty())
{
node now = que.top();
que.pop();
if(now.x==en.x && now.y==en.y)
return now.step; for(int i = ; i<; i++)
{
node tmp;
tmp.x = now.x + dir[i][];
tmp.y = now.y + dir[i][];
if(tmp.x>= && tmp.x<= && tmp.y>= && tmp.y<= && !vis[tmp.x][tmp.y])
{
tmp.step = now.step + ;
tmp.g = now.g + gdis(abs(dir[i][]), abs(dir[i][]));
tmp.h = hdis(tmp, en);
tmp.f = tmp.g + tmp.h; vis[tmp.x][tmp.y] = true;
que.push(tmp);
}
}
}
} int main()
{
char s1[], s2[];
while(scanf("%s%s", s1, s2)!=EOF)
{
node st, en;
st.x = s1[]-'a'+;
st.y = s1[]-'';
en.x = s2[]-'a'+;
en.y = s2[]-'';
int step = Astar(st,en);
printf("To get from %c%d to %c%d takes %d knight moves.\n",st.x+'a'-,st.y,en.x+'a'-,en.y,step);
}
}
POJ2243 Knight Moves —— A*算法的更多相关文章
- POJ---2243 Knight Moves 使用A*算法的广度优先搜索
题目链接:http://poj.org/problem?id=2243 启发式搜索:启发式搜索就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标.这样可以省 ...
- poj2243 Knight Moves(BFS)
题目链接 http://poj.org/problem?id=2243 题意 输入8*8国际象棋棋盘上的两颗棋子(a~h表示列,1~8表示行),求马从一颗棋子跳到另一颗棋子需要的最短路径. 思路 使用 ...
- 跳马(Knight Moves), ZOJ1091, POJ2243 x
跳马(Knight Moves), ZOJ1091, POJ2243 题目描述: 给定象棋棋盘上两个位置 a 和 b,编写程序,计算马从位置 a 跳到位置 b 所需步数的最小值. 输入描述: 输入文件 ...
- poj2243 && hdu1372 Knight Moves(BFS)
转载请注明出处:viewmode=contents">http://blog.csdn.net/u012860063?viewmode=contents 题目链接: POJ:http: ...
- HDU 1372 Knight Moves 题解
Knight Moves Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tota ...
- Knight Moves (双向bfs)
# 10028. 「一本通 1.4 例 3」Knight Moves [题目描述] 编写一个程序,计算一个骑士从棋盘上的一个格子到另一个格子所需的最小步数.骑士一步可以移动到的位置由下图给出. [算法 ...
- Knight Moves UVA - 439
A friend of you is doing research on the Traveling Knight Problem (TKP) where you are to find the sh ...
- Knight Moves
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...
- HDU 1372 Knight Moves
最近在学习广搜 这道题同样是一道简单广搜题=0= 题意:(百度复制粘贴0.0) 题意:给出骑士的骑士位置和目标位置,计算骑士要走多少步 思路:首先要做这道题必须要理解国际象棋中骑士的走法,国际象棋中 ...
随机推荐
- jsp 详解request对象
request对象 客户端的请求信息被封装在request对象中,通过它才能了解到客户的需求,然后做出响应.它是HttpServletRequest类的实例. 序号 方 法 说 明 1 object ...
- 洛谷 [P2148] E&G
SG函数的应用 首先每一组都是独立的,所以我们可以求出每一组的SG值异或出来. 那么怎么求每一组的SG值呢,网上的题解都是打表找规律,但其实这个规律是可以证明的 先看规律: x为奇数,y为奇数:SG= ...
- iOS推送的开启与关闭
开启: [[UIApplication sharedApplication] registerForRemoteNotificationTypes: UIRemoteNotificationType ...
- 【Java TCP/IP Socket】深入剖析socket——数据传输的底层实现
底层数据结构 如果不理解套接字的具体实现所关联的数据结构和底层协议的工作细节,就很难抓住网络编程的精妙之处,对于TCP套接字来说,更是如此.套接字所关联的底层的数据结构集包含了特定Socket实例所关 ...
- iOS中创建自定义的圆角按钮
iOS中很多时候都需要用到指定风格的圆角按钮,尽管UIButton提供了一个方式创建圆角按钮: + (id)buttonWithType:(UIButtonType)buttonType;//指定bu ...
- 查询公司外网ip方法
curl -s "http://checkip.dyndns.org/"|cut -f 6 -d" "|cut -f 1 -d"<" ...
- jquery 常用选择器 回顾 ajax() parent() parents() children() siblings() find() eq() has() filter() next()
1. $.ajax() ajax 本身是异步操作,当需要将 异步 改为 同步时: async: false 2.parent() 父级元素 和 parents() 祖先元素 的区别 parent ...
- Bean property XX' is not writable or has an invalid setter method
刚刚搞spring.property注入时遇到这个问题,百度一下.非常多人说是命名或者get set方法不一致的问题,可是这个我是知道的.写的时候也注意到这些.所以应该不是这个问题.以为是xml头写的 ...
- flex 操作xml 实现增删改查 .
一 在介绍Flex中操作XML之前,首先简单介绍下XML中的基本术语. 元素:XML中拥有开始标签和结束标签的这一块称为“元素” 节点:把XML元素与文本结合起来统称为节点 根节点:位于整 ...
- Html5培训之精髓
一.核心技术(可去各技术官网学习) 1.html5的六大核心技术:Html5,CSS3,JavaScript,WebSocket,PhoneGap,Node.js,它们覆盖了设备端,浏览器端和云端的开 ...