题目链接:http://poj.org/problem?id=1195

题目意思:有一部 mobie phone 基站,它的面积被分成一个个小正方形(1 * 1 的大小),所有的小正方形的面积构成了一个 S * S 大小的矩阵(下标都是从 0 ~ S-1 变化的)。

  有四种指令:

  第 一 行的指令默认输入是 0, 空格之后是矩阵的大小: S

最后一行的指令是 3, 代表 整个输入结束

注意:这两行的指令只会出现一次!

夹在它们中间的指令有可能是指令1,假设为X Y A,代表向第 X 行 第 Y 列的那个小正方形加上A (可正可负),不需要输出结果。 又或者是指令2,假设为 L B R T,代表要计算出 行 L ~ R,列 B ~ T 所围住的矩形的和,这个指令要求输出这个和。

看了很久,终于看明白题目了,表示英文太差,经常看不懂POJ 的英文题 = =。

二维树状数组,有了前一天二维树状数组探索版的积累,套了下模板。不过询问那里,也就是指令 2 的输出有点问题,今天终于改好了,happy ^_^ ....

首先要知道二维树状数组这个模板的 Sum 究竟算出来的是什么:假如调用的是Sum(i, j)啦,那么它求出的是从最左上角的坐标到坐标 (i, j) 所围的面积的和!!! 那么如果要求特定的某个子矩阵的面积(例如 (2, 3) ~ (3,4)),就需要减去相应不需要的部分啦。

数字4 是我们要求的部分,如果单纯调用Sum(3, 4) 的话,得出的是编号 1 的和,那么我们需要减去2和3的和,才能得出4的和,而要得出2的和,也需要减去[A11 + A12]这个矩阵的和啦,也就是Sum(3, 2) - Sum(1, 2),对应代码中的 Sum(R+1, B)-Sum(L, B)。而编号 3 的和对应代码: Sum(L, T+1)。

(之前错误地写成Sum(3, 4)- Sum(2, 3) 了, = =,粗心呀~~~,读者请忽略)

还有一个值得注意的地方是,树状数组下标是从1开始的,而题目坐标是从0开始的,所以不妨相应地向右下角移动一位,就是说,假设输入的是0 0,那么就看成是1 1 (这个是受hdu 1541 的 Stars 启发啦)

 #include <iostream>
#include <cstdio>
#include <cstring>
using namespace std; const int maxn = + ;
int A[maxn][maxn];
int C[maxn][maxn];
int size; int lowbit(int x)
{
return x & (-x);
} int Sum(int i, int j)
{
int result = ;
for (int x = i; x > ; x -= lowbit(x))
{
for (int y = j; y > ; y -= lowbit(y))
result += C[x][y];
}
return result;
} void Modify(int i, int j, int delta)
{
A[i][j] += delta; for (int x = i; x < size+; x += lowbit(x))
{
for (int y = j; y < size+; y += lowbit(y))
C[x][y] += delta;
}
} int main()
{
int x, y, ask, num, L, B, R, T;
memset(A, , sizeof(A));
memset(C, , sizeof(C));
while (scanf("%d", &ask) != EOF && ask != )
{
if (ask == )
scanf("%d", &size);
else if (ask == )
{
scanf("%d%d%d", &x, &y, &num);
Modify(x+, y+, num);
}
else if (ask == )
{
scanf("%d%d%d%d", &L, &B, &R, &T);
printf("%d\n", Sum(R+, T+)-(Sum(R+, B)-Sum(L, B))- Sum(L, T+)); // 对应图中的1-2-3
}
}
return ;
}

poj 1195 Mobile phones 解题报告的更多相关文章

  1. poj 1195:Mobile phones(二维树状数组,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14489   Accepted: 6735 De ...

  2. poj 1195:Mobile phones(二维线段树,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14391   Accepted: 6685 De ...

  3. 题解报告:poj 1195 Mobile phones(二维BIT裸题)

    Description Suppose that the fourth generation mobile phone base stations in the Tampere area operat ...

  4. (简单) POJ 1195 Mobile phones,二维树状数组。

    Description Suppose that the fourth generation mobile phone base stations in the Tampere area operat ...

  5. POJ 1195 Mobile phones(二维树状数组)

                                                                  Mobile phones Time Limit: 5000MS   Mem ...

  6. POJ 1195 Mobile phones (二维树状数组)

    Description Suppose that the fourth generation mobile phone base stations in the Tampere area operat ...

  7. poj 1195 Mobile phones(二维树状数组)

    树状数组支持两种操作: Add(x, d)操作:   让a[x]增加d. Query(L,R): 计算 a[L]+a[L+1]……a[R]. 当要频繁的对数组元素进行修改,同时又要频繁的查询数组内任一 ...

  8. ●POJ 1195 Mobile phones

    题链: http://poj.org/problem?id=1195 题解: 二维树状数组 #include<cstdio> #include<cstring> #includ ...

  9. POJ 1195 Mobile phones【二维树状数组】

    <题目链接> 题目大意: 一个由数字构成的大矩阵,开始是全0,能进行两种操作1) 对矩阵里的某个数加上一个整数(可正可负)2) 查询某个子矩阵里所有数字的和要求对每次查询,输出结果 解题分 ...

随机推荐

  1. Codeforces Round #267 (Div. 2) C. George and Job (dp)

    wa哭了,,t哭了,,还是看了题解... 8170436                 2014-10-11 06:41:51     njczy2010     C - George and Jo ...

  2. android 完美退出应用程序。

    Android 程序在点击回退键时,如果只有一个activity,调用finish()方法就能退出界面,如果有多个界面,在调用该方法时,只会销毁当前的activity,显示栈顶的其它activity, ...

  3. hdu4848 求到达每个点总时间最短(sum[d[i]])。

    开始的时候是暴力dfs+剪枝,怎么也不行.后来参考他人思想: 先求出每个点之间的最短路(这样预处理之后的搜索就可以判重返回了),截肢还是关键:1最优性剪枝(尽量最优:目前的状态+预计还有的最小时间&g ...

  4. WdatePicker.js的使用方法 帮助文档 使用说明(时间控件)*转载

    4. 日期范围限制 静态限制 注意:日期格式必须与 realDateFmt 和 realTimeFmt 一致 你可以给通过配置minDate(最小日期),maxDate(最大日期)为静态日期值,来限定 ...

  5. 6.JAVA语言基础部分--数据库操作

    操作数据数据流程:得到Connecnt->获取Statement对象->执行sql语句返回ResultSet 1.通过DriverManager.getConnection("j ...

  6. Linux内核配置选项

    http://blog.csdn.net/wdsfup/article/details/52302142 http://www.manew.com/blog-166674-12962.html Gen ...

  7. 【转】利用shell命令操作Memcached

    原文: 张宴的博客 —— http://zyan.cc/post/384/ -------------------------------------------------------------- ...

  8. mmall 项目实战(一)项目初始化

    1.创建 数据库 及 表 数据脚本: /* Navicat Premium Data Transfer Source Server : 182.92.82.103 Source Server Type ...

  9. poj 3169 Layout(差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6549   Accepted: 3168 Descriptio ...

  10. 【转载】lvs为何不能完全替代DNS轮询

    上一篇文章"一分钟了解负载均衡的一切"引起了不少同学的关注,评论中大家争论的比较多的一个技术点是接入层负载均衡技术,部分同学持这样的观点: 1)nginx前端加入lvs和keepa ...