传送门

线段树好题

因为题目中相同的只算一次,我们可以联想到HH的项链,于是考虑离线的做法

先把所有的询问按$r$排序,然后每一次不断将$a[r]$加入线段树

线段树上维护四个值,$sum,hix,sumtag,hixtag$,分别代表当前节点的值,节点历史上的最大值,当前的增加标记,历史上最大的增加标记

然后pushdown的过程可以看代码,还是比较清楚的

考虑怎么添加元素,设序列中上一个与$i$相等的数的位置是$Pre[i]$,那么就把区间$[Pre[i],i]$加$a[i]$即可

查询的话只要查$[l,r]$的$hix$即可

除了pushdown有点烦其他都还好

 //minamoto
#include<iostream>
#include<cstdio>
#include<algorithm>
#define ls (p<<1)
#define rs (p<<1|1)
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,:;}
ll read(){
#define num ch-'0'
char ch;bool flag=;ll res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
char sr[<<],z[];int C=-,Z;
inline void Ot(){fwrite(sr,,C+,stdout),C=-;}
void print(ll x){
if(C><<)Ot();if(x<)sr[++C]=,x=-x;
while(z[++Z]=x%+,x/=);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=1e5+;
struct node{
ll sum,hix,stag,htag;
node(){sum=hix=stag=htag=;}
inline node operator +(node b){
node res;
res.sum=max(sum,b.sum),res.hix=max(hix,b.hix);
return res;
}
}b[N<<];
struct Q{
int l,r,id;
inline bool operator <(const Q b)const
{return r<b.r;}
}q[N];
int n,m,cur[N*],Pre[N],ql,qr;ll a[N],ans[N],k;
inline void upd(int p){b[p]=b[ls]+b[rs];}
void pd(int p){
b[ls].hix=max(b[ls].hix,b[ls].sum+b[p].htag);
b[rs].hix=max(b[rs].hix,b[rs].sum+b[p].htag);
b[ls].sum+=b[p].stag,b[rs].sum+=b[p].stag;
b[ls].htag=max(b[ls].htag,b[ls].stag+b[p].htag);
b[rs].htag=max(b[rs].htag,b[rs].stag+b[p].htag);
b[ls].stag+=b[p].stag,b[rs].stag+=b[p].stag;
b[p].stag=b[p].htag=;
}
void update(int p,int l,int r){
if(ql<=l&&qr>=r){
b[p].sum+=k,cmax(b[p].hix,b[p].sum);
b[p].stag+=k,cmax(b[p].htag,b[p].stag);
return;
}
pd(p);int mid=(l+r)>>;
if(ql<=mid) update(ls,l,mid);
if(qr>mid) update(rs,mid+,r);
upd(p);
}
node query(int p,int l,int r){
if(ql<=l&&qr>=r) return b[p];
pd(p);int mid=(l+r)>>;
if(ql>mid) return query(rs,mid+,r);
else if(qr<=mid) return query(ls,l,mid);
else return query(ls,l,mid)+query(rs,mid+,r);
}
int main(){
// freopen("testdata.in","r",stdin);
n=read();
for(int i=;i<=n;++i)
a[i]=read(),Pre[i]=cur[a[i]+(int)1e5],cur[a[i]+(int)1e5]=i;
m=read();
for(int i=;i<=m;++i)
q[i].l=read(),q[i].r=read(),q[i].id=i;
sort(q+,q++m);
for(int i=,j=;i<=n&&j<=m;++i){
ql=Pre[i]+,qr=i,k=a[i];update(,,n);
for(;j<=m&&q[j].r<=i;++j){
ql=q[j].l,qr=q[j].r;
ans[q[j].id]=query(,,n).hix;
}
}
for(int i=;i<=m;++i) print(ans[i]);
return Ot(),;
}

SP1557 GSS2 - Can you answer these queries II(线段树)的更多相关文章

  1. bzoj 2482: [Spoj GSS2] Can you answer these queries II 线段树

    2482: [Spoj1557] Can you answer these queries II Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 145 ...

  2. SPOJ GSS2 Can you answer these queries II ——线段树

    [题目分析] 线段树,好强! 首先从左往右依次扫描,线段树维护一下f[].f[i]表示从i到当前位置的和的值. 然后询问按照右端点排序,扫到一个位置,就相当于查询区间历史最值. 关于历史最值问题: 标 ...

  3. SPOJ 1557. Can you answer these queries II 线段树

    Can you answer these queries II Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 https://www.spoj.com/pr ...

  4. 【BZOJ2482】[Spoj1557] Can you answer these queries II 线段树

    [BZOJ2482][Spoj1557] Can you answer these queries II Description 给定n个元素的序列. 给出m个询问:求l[i]~r[i]的最大子段和( ...

  5. SP1557 GSS2 - Can you answer these queries II

    一开始看不懂题解,看懂了题解之后觉得还是挺妙的. 好多题解里都提到了HH的项链,但是我觉得关系并不大啊…… 先把所有询问离线下来按照右端点排序,按照询问的要求一个一个加入数字,怎么加入数字,我们设计一 ...

  6. Spoj 1557 Can you answer these queries II 线段树 随意区间最大子段和 不反复数字

    题目链接:点击打开链接 每一个点都是最大值,把一整个序列和都压缩在一个点里. 1.普通的区间求和就是维护2个值,区间和Sum和延迟标志Lazy 2.Old 是该区间里出现过最大的Sum, Oldlaz ...

  7. SPOJ GSS2 - Can you answer these queries II(线段树 区间修改+区间查询)(后缀和)

    GSS2 - Can you answer these queries II #tree Being a completist and a simplist, kid Yang Zhe cannot ...

  8. SPOJ GSS1_Can you answer these queries I(线段树区间合并)

    SPOJ GSS1_Can you answer these queries I(线段树区间合并) 标签(空格分隔): 线段树区间合并 题目链接 GSS1 - Can you answer these ...

  9. spoj gss2 : Can you answer these queries II 离线&&线段树

    1557. Can you answer these queries II Problem code: GSS2 Being a completist and a simplist, kid Yang ...

随机推荐

  1. HDU 4478 Where is King

    题目大意: 一个王可以向周围8个方格走,如果都不通留在原地,t秒后,他可能存在的位置数 这题数据量过大,我们需要通过奇偶性判断,如果t = 0可以到达,说明 t=2,4,6....都可以到达 所以我这 ...

  2. Count the Colors-ZOJ1610(线段树区间求)

    Painting some colored segments on a line, some previously painted segments may be covered by some th ...

  3. MySQL查询去重语句

    1.distinct select count(distinct CName) from Course select count(CName) from (select distinct CName ...

  4. Spring Boot实现多个数据源教程收集(待实践)

    先收集,后续实践. http://blog.csdn.net/catoop/article/details/50575038 http://blog.csdn.net/neosmith/article ...

  5. JSP的会话(Session)跟踪

    以下内容引用自http://wiki.jikexueyuan.com/project/jsp/session-tracking.html: 会话(Session) HTTP是一个“无状态”协议,这意味 ...

  6. CE310A

    http://v.ku6.com/show/tvWNTLZTVWuGVPE5ZMSUyQ...html

  7. C#代码读写XML

    <1> 创建XML文档 using System; using System.Collections.Generic; using System.Linq; using System.Te ...

  8. Python学习系列之内置函数

    数学相关 abs(a):求取绝对值 max(list):求取list最大值 min(list):求取list最小值 sum(list):求取list元素的和 sorted(list):排序,返回排序后 ...

  9. [AngularJS] ocLazyLoad -- Lazy loaded module should contain all the dependencies code

    Recentlly works with AngularJS + ocLazyLoad, our project have break down into multi small modules. F ...

  10. [Java Sprint] Spring XML Configuration : Setter Injection Demo

    In CustomerServiceImpl.java, we hardcoded 'HibernateCustomerRepositoryImpl' package com.pluralsight. ...