Python Matplotlib模块--pylab
#-*- coding: utf-8 -*-
'''
subplot(m,n,p):其中,m表示是图排成m行,n表示图排成n列,也就是整个figure中有n个图是排成一行的,一共m行,如果m=2就是表示2行图。p表示图所在的位置,p=1表示从左到右从上到下的第一个位置。
np.random.uniform(0.5,1.0,n):获取 0.5~1.0之间n个随机数
zip(x,y):将x和Y中的数据两两配对最后以列表返回
plt.text(x+0.4, y+0.1, "%.2f"%y, ha="center"):指定文字出现在柱状图上的位置和内容
x+0.4:文字显示横向增加0.4长度
y+0.1:文字显示纵向增加0.1长度
"%.2f"%y:应该显示的内容
@author: soyo
'''
import matplotlib.pylab as plt
import numpy as np
plt.subplot(2,1,1)
n=12
x=np.arange(n)
print x
print x/float(n)
print np.random.uniform(0.5,1.0,n)
y1=(1-x/float(n))*np.random.uniform(0.5,1.0,n)
y2=(1-x/float(n))*np.random.uniform(0.5,1.0,n)
plt.bar(x,+y1,facecolor="red",edgecolor="grey")
plt.bar(x,-y2,facecolor="lightblue",edgecolor="orange")
print y1
for x,y in zip(x,y1):
plt.text(x+0.4, y+0.1, "%.2f"%y, ha="center")
print (x,y)
plt.ylim(-1.25,+1.25)
plt.subplot(2,2,3)
x=np.linspace(-np.pi,np.pi,300, endpoint=True)
print x
sin=np.sinc(x)
cos=np.cos(x)
plt.plot(x,cos,color="red",linewidth=2.7,linestyle="-")
plt.plot(x,sin,color="blue",linewidth=4,linestyle="--")
plt.xlim(x.min()*1.1,x.max()*1.1)
plt.xticks([-np.pi,-np.pi/2,0,np.pi/2,np.pi],[r'$-\pi$',r'$-\pi/2$',r'$0$',r'$+\pi/2$',r'$+\pi$'])
plt.ylim(cos.min()*1.1,cos.max()*1.1)
# plt.yticks([-1,0,1],[r'$-1$',r'$0$',r'$+1$'])
plt.yticks([-1,0,1]) plt.subplot(2,2,4)
m=10
z=np.random.uniform(5,9,6)
plt.pie(z)
plt.show()
结果:

[ 0 1 2 3 4 5 6 7 8 9 10 11]
[ 0. 0.08333333 0.16666667 0.25 0.33333333 0.41666667
0.5 0.58333333 0.66666667 0.75 0.83333333 0.91666667]
[ 0.95962168 0.83510776 0.59960879 0.9103227 0.86161055 0.85219339
0.64341482 0.50396784 0.79940237 0.78113541 0.66371799 0.63459297]
[ 0.65987664 0.87527832 0.79239077 0.61438775 0.44085434 0.38703261
0.40706581 0.2836271 0.25465063 0.20754596 0.124999 0.08099565]
(0, 0.65987664052659789)
(1, 0.87527832104794756)
(2, 0.79239077290271298)
(3, 0.61438775127130618)
(4, 0.44085434356099779)
(5, 0.3870326100974873)
(6, 0.40706580998264275)
(7, 0.2836271049672956)
(8, 0.2546506260468242)
(9, 0.20754596219057092)
(10, 0.12499900221786377)
(11, 0.080995646704109761)
[-3.14159265 -3.12057866 -3.09956466 -3.07855066 -3.05753666 -3.03652267
-3.01550867 -2.99449467 -2.97348067 -2.95246667 -2.93145268 -2.91043868
-2.88942468 -2.86841068 -2.84739669 -2.82638269 -2.80536869 -2.78435469
-2.7633407 -2.7423267 -2.7213127 -2.7002987 -2.6792847 -2.65827071
-2.63725671 -2.61624271 -2.59522871 -2.57421472 -2.55320072 -2.53218672
-2.51117272 -2.49015873 -2.46914473 -2.44813073 -2.42711673 -2.40610273
-2.38508874 -2.36407474 -2.34306074 -2.32204674 -2.30103275 -2.28001875
-2.25900475 -2.23799075 -2.21697676 -2.19596276 -2.17494876 -2.15393476
-2.13292076 -2.11190677 -2.09089277 -2.06987877 -2.04886477 -2.02785078
-2.00683678 -1.98582278 -1.96480878 -1.94379479 -1.92278079 -1.90176679
-1.88075279 -1.85973879 -1.8387248 -1.8177108 -1.7966968 -1.7756828
-1.75466881 -1.73365481 -1.71264081 -1.69162681 -1.67061282 -1.64959882
-1.62858482 -1.60757082 -1.58655683 -1.56554283 -1.54452883 -1.52351483
-1.50250083 -1.48148684 -1.46047284 -1.43945884 -1.41844484 -1.39743085
-1.37641685 -1.35540285 -1.33438885 -1.31337486 -1.29236086 -1.27134686
-1.25033286 -1.22931886 -1.20830487 -1.18729087 -1.16627687 -1.14526287
-1.12424888 -1.10323488 -1.08222088 -1.06120688 -1.04019289 -1.01917889
-0.99816489 -0.97715089 -0.95613689 -0.9351229 -0.9141089 -0.8930949
-0.8720809 -0.85106691 -0.83005291 -0.80903891 -0.78802491 -0.76701092
-0.74599692 -0.72498292 -0.70396892 -0.68295492 -0.66194093 -0.64092693
-0.61991293 -0.59889893 -0.57788494 -0.55687094 -0.53585694 -0.51484294
-0.49382895 -0.47281495 -0.45180095 -0.43078695 -0.40977295 -0.38875896
-0.36774496 -0.34673096 -0.32571696 -0.30470297 -0.28368897 -0.26267497
-0.24166097 -0.22064698 -0.19963298 -0.17861898 -0.15760498 -0.13659098
-0.11557699 -0.09456299 -0.07354899 -0.05253499 -0.031521 -0.010507
0.010507 0.031521 0.05253499 0.07354899 0.09456299 0.11557699
0.13659098 0.15760498 0.17861898 0.19963298 0.22064698 0.24166097
0.26267497 0.28368897 0.30470297 0.32571696 0.34673096 0.36774496
0.38875896 0.40977295 0.43078695 0.45180095 0.47281495 0.49382895
0.51484294 0.53585694 0.55687094 0.57788494 0.59889893 0.61991293
0.64092693 0.66194093 0.68295492 0.70396892 0.72498292 0.74599692
0.76701092 0.78802491 0.80903891 0.83005291 0.85106691 0.8720809
0.8930949 0.9141089 0.9351229 0.95613689 0.97715089 0.99816489
1.01917889 1.04019289 1.06120688 1.08222088 1.10323488 1.12424888
1.14526287 1.16627687 1.18729087 1.20830487 1.22931886 1.25033286
1.27134686 1.29236086 1.31337486 1.33438885 1.35540285 1.37641685
1.39743085 1.41844484 1.43945884 1.46047284 1.48148684 1.50250083
1.52351483 1.54452883 1.56554283 1.58655683 1.60757082 1.62858482
1.64959882 1.67061282 1.69162681 1.71264081 1.73365481 1.75466881
1.7756828 1.7966968 1.8177108 1.8387248 1.85973879 1.88075279
1.90176679 1.92278079 1.94379479 1.96480878 1.98582278 2.00683678
2.02785078 2.04886477 2.06987877 2.09089277 2.11190677 2.13292076
2.15393476 2.17494876 2.19596276 2.21697676 2.23799075 2.25900475
2.28001875 2.30103275 2.32204674 2.34306074 2.36407474 2.38508874
2.40610273 2.42711673 2.44813073 2.46914473 2.49015873 2.51117272
2.53218672 2.55320072 2.57421472 2.59522871 2.61624271 2.63725671
2.65827071 2.6792847 2.7002987 2.7213127 2.7423267 2.7633407
2.78435469 2.80536869 2.82638269 2.84739669 2.86841068 2.88942468
2.91043868 2.93145268 2.95246667 2.97348067 2.99449467 3.01550867
3.03652267 3.05753666 3.07855066 3.09956466 3.12057866 3.14159265]
[ 0 1 2 3 4 5 6 7 8 9 10 11]
[ 0. 0.08333333 0.16666667 0.25 0.33333333 0.41666667
0.5 0.58333333 0.66666667 0.75 0.83333333 0.91666667]
[ 0.95962168 0.83510776 0.59960879 0.9103227 0.86161055 0.85219339
0.64341482 0.50396784 0.79940237 0.78113541 0.66371799 0.63459297]
[ 0.65987664 0.87527832 0.79239077 0.61438775 0.44085434 0.38703261
0.40706581 0.2836271 0.25465063 0.20754596 0.124999 0.08099565]
(0, 0.65987664052659789)
(1, 0.87527832104794756)
(2, 0.79239077290271298)
(3, 0.61438775127130618)
(4, 0.44085434356099779)
(5, 0.3870326100974873)
(6, 0.40706580998264275)
(7, 0.2836271049672956)
(8, 0.2546506260468242)
(9, 0.20754596219057092)
(10, 0.12499900221786377)
(11, 0.080995646704109761)
[-3.14159265 -3.12057866 -3.09956466 -3.07855066 -3.05753666 -3.03652267
-3.01550867 -2.99449467 -2.97348067 -2.95246667 -2.93145268 -2.91043868
-2.88942468 -2.86841068 -2.84739669 -2.82638269 -2.80536869 -2.78435469
-2.7633407 -2.7423267 -2.7213127 -2.7002987 -2.6792847 -2.65827071
-2.63725671 -2.61624271 -2.59522871 -2.57421472 -2.55320072 -2.53218672
-2.51117272 -2.49015873 -2.46914473 -2.44813073 -2.42711673 -2.40610273
-2.38508874 -2.36407474 -2.34306074 -2.32204674 -2.30103275 -2.28001875
-2.25900475 -2.23799075 -2.21697676 -2.19596276 -2.17494876 -2.15393476
-2.13292076 -2.11190677 -2.09089277 -2.06987877 -2.04886477 -2.02785078
-2.00683678 -1.98582278 -1.96480878 -1.94379479 -1.92278079 -1.90176679
-1.88075279 -1.85973879 -1.8387248 -1.8177108 -1.7966968 -1.7756828
-1.75466881 -1.73365481 -1.71264081 -1.69162681 -1.67061282 -1.64959882
-1.62858482 -1.60757082 -1.58655683 -1.56554283 -1.54452883 -1.52351483
-1.50250083 -1.48148684 -1.46047284 -1.43945884 -1.41844484 -1.39743085
-1.37641685 -1.35540285 -1.33438885 -1.31337486 -1.29236086 -1.27134686
-1.25033286 -1.22931886 -1.20830487 -1.18729087 -1.16627687 -1.14526287
-1.12424888 -1.10323488 -1.08222088 -1.06120688 -1.04019289 -1.01917889
-0.99816489 -0.97715089 -0.95613689 -0.9351229 -0.9141089 -0.8930949
-0.8720809 -0.85106691 -0.83005291 -0.80903891 -0.78802491 -0.76701092
-0.74599692 -0.72498292 -0.70396892 -0.68295492 -0.66194093 -0.64092693
-0.61991293 -0.59889893 -0.57788494 -0.55687094 -0.53585694 -0.51484294
-0.49382895 -0.47281495 -0.45180095 -0.43078695 -0.40977295 -0.38875896
-0.36774496 -0.34673096 -0.32571696 -0.30470297 -0.28368897 -0.26267497
-0.24166097 -0.22064698 -0.19963298 -0.17861898 -0.15760498 -0.13659098
-0.11557699 -0.09456299 -0.07354899 -0.05253499 -0.031521 -0.010507
0.010507 0.031521 0.05253499 0.07354899 0.09456299 0.11557699
0.13659098 0.15760498 0.17861898 0.19963298 0.22064698 0.24166097
0.26267497 0.28368897 0.30470297 0.32571696 0.34673096 0.36774496
0.38875896 0.40977295 0.43078695 0.45180095 0.47281495 0.49382895
0.51484294 0.53585694 0.55687094 0.57788494 0.59889893 0.61991293
0.64092693 0.66194093 0.68295492 0.70396892 0.72498292 0.74599692
0.76701092 0.78802491 0.80903891 0.83005291 0.85106691 0.8720809
0.8930949 0.9141089 0.9351229 0.95613689 0.97715089 0.99816489
1.01917889 1.04019289 1.06120688 1.08222088 1.10323488 1.12424888
1.14526287 1.16627687 1.18729087 1.20830487 1.22931886 1.25033286
1.27134686 1.29236086 1.31337486 1.33438885 1.35540285 1.37641685
1.39743085 1.41844484 1.43945884 1.46047284 1.48148684 1.50250083
1.52351483 1.54452883 1.56554283 1.58655683 1.60757082 1.62858482
1.64959882 1.67061282 1.69162681 1.71264081 1.73365481 1.75466881
1.7756828 1.7966968 1.8177108 1.8387248 1.85973879 1.88075279
1.90176679 1.92278079 1.94379479 1.96480878 1.98582278 2.00683678
2.02785078 2.04886477 2.06987877 2.09089277 2.11190677 2.13292076
2.15393476 2.17494876 2.19596276 2.21697676 2.23799075 2.25900475
2.28001875 2.30103275 2.32204674 2.34306074 2.36407474 2.38508874
2.40610273 2.42711673 2.44813073 2.46914473 2.49015873 2.51117272
2.53218672 2.55320072 2.57421472 2.59522871 2.61624271 2.63725671
2.65827071 2.6792847 2.7002987 2.7213127 2.7423267 2.7633407
2.78435469 2.80536869 2.82638269 2.84739669 2.86841068 2.88942468
2.91043868 2.93145268 2.95246667 2.97348067 2.99449467 3.01550867
3.03652267 3.05753666 3.07855066 3.09956466 3.12057866 3.14159265]
Python Matplotlib模块--pylab的更多相关文章
- Python Matplotlib模块--pyplot
#-*- coding: utf- -*- ''' numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=No ...
- Windows python 安装 nNumpy、Scipy、matplotlib模块
折腾了 很久,总结一些. 首先如果python 是64位,安装32位的numpy ,Scipy,或者matplotlib 模块. 会出现很多问题. 比如当你 在python 导入 Numpy 时,导入 ...
- python 爬虫与数据可视化--matplotlib模块应用
一.数据分析的目的(利用大数据量数据分析,帮助人们做出战略决策) 二.什么是matplotlib? matplotlib: 最流行的Python底层绘图库,主要做数据可视化图表,名字取材于MATLAB ...
- 为python安装matplotlib模块
matplotlib是python中强大的画图模块. 首先确保已经安装python,然后用pip来安装matplotlib模块. 进入到cmd窗口下,执行python -m pip install - ...
- Python使用matplotlib模块绘制多条折线图、散点图
用matplotlib模块 #!usr/bin/env python #encoding:utf-8 ''' __Author__:沂水寒城 功能:折线图.散点图测试 ''' import rando ...
- windows_64下python下载安装Numpy、Scipy、matplotlib模块
本文应用的python3.6.3及其对应的Numpy.Scipy.matplotlib计算模块的cp36版本,其中Numpy是需要MKL版本的Numpy,这是后续安装Scipy的需要(本机系统win7 ...
- windows下python安装Numpy、Scipy、matplotlib模块(转载)
python下载链接 Numpy下载链接 python中Numpy包的安装及使用 Numpy包的安装 准备工作 Python安装 pip安装 将pip所在的文件夹添加到环境变量path路径中 ...
- python 1: 解决linux系统下python中的matplotlib模块内的pyplot输出图片不能显示中文的问题
问题: 我在ubuntu14.04下用python中的matplotlib模块内的pyplot输出图片不能显示中文,怎么解决呢? 解决: 1.指定默认编码为UTF-8: 在python代码开头加入如下 ...
- Python使用pip安装matplotlib模块
matplotlib是python中强大的画图模块. 首先确保已经安装python,然后用pip来安装matplotlib模块. 进入到cmd窗口下,建议执行python -m pip install ...
随机推荐
- Mysql学习总结(43)——MySQL主从复制详细配置
环境 操作系统:CentOS-6.6-x86_64-bin-DVD1.iso MySQL版本:mysql-5.6.26.tar.gz 主节点IP:192.168.1.205 主机名:edu-mysql ...
- MySQL数据库连接不上的一种可能的解决办法
右键单击我的电脑->管理->服务和应用程序->服务,右键停止如图所示的服务
- CodeForcesGym 100517I IQ Test
IQ Test Time Limit: 2000ms Memory Limit: 262144KB This problem will be judged on CodeForcesGym. Orig ...
- 【HDOJ3341】Lost's revenge(AC自动机,DP)
题意:给出一个n个模式串,一个目标串,问把目标串重新排位最多能产生多少个模式串,可以重叠且所有串只包含A C G T. n<=10,len[i]<=10 len(s)<=40 Cas ...
- 自己打断点走的struts流程&拦截器工作原理
①. 请求发送给 StrutsPrepareAndExecuteFilter ②. StrutsPrepareAndExecuteFilter 判定该请求是否是一个 Struts2 请 求(Actio ...
- Linux下汇编语言学习笔记41 ---
这是17年暑假学习Linux汇编语言的笔记记录,参考书目为清华大学出版社 Jeff Duntemann著 梁晓辉译<汇编语言基于Linux环境>的书,喜欢看原版书的同学可以看<Ass ...
- ArrayAdapter的使用
package com.pingyijinren.test; import android.content.Context; import android.view.LayoutInflater; i ...
- 洛谷 P1457 城堡 The Castle
P1457 城堡 The Castle 题目描述 我们憨厚的USACO主人公农夫约翰(Farmer John)以无法想象的运气,在他生日那天收到了一份特别的礼物:一张“幸运爱尔兰”(一种彩票).结果这 ...
- spark开发环境配置
以后spark,mapreduce,mpi可能三者集于同一平台,各自的侧重点有所不用,相当于云计算与高性能计算的集合,互补,把spark的基础看了看,现在把开发环境看看,主要是看源码,最近Apache ...
- commons-lang常用工具类StringEscapeUtils
原文:https://my.oschina.net/mousai/blog/88832 在apache commons-lang(2.3以上版本)中为我们提供了一个方便做转义的工具类,主要是为了防止s ...