Python Matplotlib模块--pylab
#-*- coding: utf-8 -*-
'''
subplot(m,n,p):其中,m表示是图排成m行,n表示图排成n列,也就是整个figure中有n个图是排成一行的,一共m行,如果m=2就是表示2行图。p表示图所在的位置,p=1表示从左到右从上到下的第一个位置。
np.random.uniform(0.5,1.0,n):获取 0.5~1.0之间n个随机数
zip(x,y):将x和Y中的数据两两配对最后以列表返回
plt.text(x+0.4, y+0.1, "%.2f"%y, ha="center"):指定文字出现在柱状图上的位置和内容
x+0.4:文字显示横向增加0.4长度
y+0.1:文字显示纵向增加0.1长度
"%.2f"%y:应该显示的内容
@author: soyo
'''
import matplotlib.pylab as plt
import numpy as np
plt.subplot(2,1,1)
n=12
x=np.arange(n)
print x
print x/float(n)
print np.random.uniform(0.5,1.0,n)
y1=(1-x/float(n))*np.random.uniform(0.5,1.0,n)
y2=(1-x/float(n))*np.random.uniform(0.5,1.0,n)
plt.bar(x,+y1,facecolor="red",edgecolor="grey")
plt.bar(x,-y2,facecolor="lightblue",edgecolor="orange")
print y1
for x,y in zip(x,y1):
plt.text(x+0.4, y+0.1, "%.2f"%y, ha="center")
print (x,y)
plt.ylim(-1.25,+1.25)
plt.subplot(2,2,3)
x=np.linspace(-np.pi,np.pi,300, endpoint=True)
print x
sin=np.sinc(x)
cos=np.cos(x)
plt.plot(x,cos,color="red",linewidth=2.7,linestyle="-")
plt.plot(x,sin,color="blue",linewidth=4,linestyle="--")
plt.xlim(x.min()*1.1,x.max()*1.1)
plt.xticks([-np.pi,-np.pi/2,0,np.pi/2,np.pi],[r'$-\pi$',r'$-\pi/2$',r'$0$',r'$+\pi/2$',r'$+\pi$'])
plt.ylim(cos.min()*1.1,cos.max()*1.1)
# plt.yticks([-1,0,1],[r'$-1$',r'$0$',r'$+1$'])
plt.yticks([-1,0,1]) plt.subplot(2,2,4)
m=10
z=np.random.uniform(5,9,6)
plt.pie(z)
plt.show()
结果:
[ 0 1 2 3 4 5 6 7 8 9 10 11]
[ 0. 0.08333333 0.16666667 0.25 0.33333333 0.41666667
0.5 0.58333333 0.66666667 0.75 0.83333333 0.91666667]
[ 0.95962168 0.83510776 0.59960879 0.9103227 0.86161055 0.85219339
0.64341482 0.50396784 0.79940237 0.78113541 0.66371799 0.63459297]
[ 0.65987664 0.87527832 0.79239077 0.61438775 0.44085434 0.38703261
0.40706581 0.2836271 0.25465063 0.20754596 0.124999 0.08099565]
(0, 0.65987664052659789)
(1, 0.87527832104794756)
(2, 0.79239077290271298)
(3, 0.61438775127130618)
(4, 0.44085434356099779)
(5, 0.3870326100974873)
(6, 0.40706580998264275)
(7, 0.2836271049672956)
(8, 0.2546506260468242)
(9, 0.20754596219057092)
(10, 0.12499900221786377)
(11, 0.080995646704109761)
[-3.14159265 -3.12057866 -3.09956466 -3.07855066 -3.05753666 -3.03652267
-3.01550867 -2.99449467 -2.97348067 -2.95246667 -2.93145268 -2.91043868
-2.88942468 -2.86841068 -2.84739669 -2.82638269 -2.80536869 -2.78435469
-2.7633407 -2.7423267 -2.7213127 -2.7002987 -2.6792847 -2.65827071
-2.63725671 -2.61624271 -2.59522871 -2.57421472 -2.55320072 -2.53218672
-2.51117272 -2.49015873 -2.46914473 -2.44813073 -2.42711673 -2.40610273
-2.38508874 -2.36407474 -2.34306074 -2.32204674 -2.30103275 -2.28001875
-2.25900475 -2.23799075 -2.21697676 -2.19596276 -2.17494876 -2.15393476
-2.13292076 -2.11190677 -2.09089277 -2.06987877 -2.04886477 -2.02785078
-2.00683678 -1.98582278 -1.96480878 -1.94379479 -1.92278079 -1.90176679
-1.88075279 -1.85973879 -1.8387248 -1.8177108 -1.7966968 -1.7756828
-1.75466881 -1.73365481 -1.71264081 -1.69162681 -1.67061282 -1.64959882
-1.62858482 -1.60757082 -1.58655683 -1.56554283 -1.54452883 -1.52351483
-1.50250083 -1.48148684 -1.46047284 -1.43945884 -1.41844484 -1.39743085
-1.37641685 -1.35540285 -1.33438885 -1.31337486 -1.29236086 -1.27134686
-1.25033286 -1.22931886 -1.20830487 -1.18729087 -1.16627687 -1.14526287
-1.12424888 -1.10323488 -1.08222088 -1.06120688 -1.04019289 -1.01917889
-0.99816489 -0.97715089 -0.95613689 -0.9351229 -0.9141089 -0.8930949
-0.8720809 -0.85106691 -0.83005291 -0.80903891 -0.78802491 -0.76701092
-0.74599692 -0.72498292 -0.70396892 -0.68295492 -0.66194093 -0.64092693
-0.61991293 -0.59889893 -0.57788494 -0.55687094 -0.53585694 -0.51484294
-0.49382895 -0.47281495 -0.45180095 -0.43078695 -0.40977295 -0.38875896
-0.36774496 -0.34673096 -0.32571696 -0.30470297 -0.28368897 -0.26267497
-0.24166097 -0.22064698 -0.19963298 -0.17861898 -0.15760498 -0.13659098
-0.11557699 -0.09456299 -0.07354899 -0.05253499 -0.031521 -0.010507
0.010507 0.031521 0.05253499 0.07354899 0.09456299 0.11557699
0.13659098 0.15760498 0.17861898 0.19963298 0.22064698 0.24166097
0.26267497 0.28368897 0.30470297 0.32571696 0.34673096 0.36774496
0.38875896 0.40977295 0.43078695 0.45180095 0.47281495 0.49382895
0.51484294 0.53585694 0.55687094 0.57788494 0.59889893 0.61991293
0.64092693 0.66194093 0.68295492 0.70396892 0.72498292 0.74599692
0.76701092 0.78802491 0.80903891 0.83005291 0.85106691 0.8720809
0.8930949 0.9141089 0.9351229 0.95613689 0.97715089 0.99816489
1.01917889 1.04019289 1.06120688 1.08222088 1.10323488 1.12424888
1.14526287 1.16627687 1.18729087 1.20830487 1.22931886 1.25033286
1.27134686 1.29236086 1.31337486 1.33438885 1.35540285 1.37641685
1.39743085 1.41844484 1.43945884 1.46047284 1.48148684 1.50250083
1.52351483 1.54452883 1.56554283 1.58655683 1.60757082 1.62858482
1.64959882 1.67061282 1.69162681 1.71264081 1.73365481 1.75466881
1.7756828 1.7966968 1.8177108 1.8387248 1.85973879 1.88075279
1.90176679 1.92278079 1.94379479 1.96480878 1.98582278 2.00683678
2.02785078 2.04886477 2.06987877 2.09089277 2.11190677 2.13292076
2.15393476 2.17494876 2.19596276 2.21697676 2.23799075 2.25900475
2.28001875 2.30103275 2.32204674 2.34306074 2.36407474 2.38508874
2.40610273 2.42711673 2.44813073 2.46914473 2.49015873 2.51117272
2.53218672 2.55320072 2.57421472 2.59522871 2.61624271 2.63725671
2.65827071 2.6792847 2.7002987 2.7213127 2.7423267 2.7633407
2.78435469 2.80536869 2.82638269 2.84739669 2.86841068 2.88942468
2.91043868 2.93145268 2.95246667 2.97348067 2.99449467 3.01550867
3.03652267 3.05753666 3.07855066 3.09956466 3.12057866 3.14159265]
[ 0 1 2 3 4 5 6 7 8 9 10 11]
[ 0. 0.08333333 0.16666667 0.25 0.33333333 0.41666667
0.5 0.58333333 0.66666667 0.75 0.83333333 0.91666667]
[ 0.95962168 0.83510776 0.59960879 0.9103227 0.86161055 0.85219339
0.64341482 0.50396784 0.79940237 0.78113541 0.66371799 0.63459297]
[ 0.65987664 0.87527832 0.79239077 0.61438775 0.44085434 0.38703261
0.40706581 0.2836271 0.25465063 0.20754596 0.124999 0.08099565]
(0, 0.65987664052659789)
(1, 0.87527832104794756)
(2, 0.79239077290271298)
(3, 0.61438775127130618)
(4, 0.44085434356099779)
(5, 0.3870326100974873)
(6, 0.40706580998264275)
(7, 0.2836271049672956)
(8, 0.2546506260468242)
(9, 0.20754596219057092)
(10, 0.12499900221786377)
(11, 0.080995646704109761)
[-3.14159265 -3.12057866 -3.09956466 -3.07855066 -3.05753666 -3.03652267
-3.01550867 -2.99449467 -2.97348067 -2.95246667 -2.93145268 -2.91043868
-2.88942468 -2.86841068 -2.84739669 -2.82638269 -2.80536869 -2.78435469
-2.7633407 -2.7423267 -2.7213127 -2.7002987 -2.6792847 -2.65827071
-2.63725671 -2.61624271 -2.59522871 -2.57421472 -2.55320072 -2.53218672
-2.51117272 -2.49015873 -2.46914473 -2.44813073 -2.42711673 -2.40610273
-2.38508874 -2.36407474 -2.34306074 -2.32204674 -2.30103275 -2.28001875
-2.25900475 -2.23799075 -2.21697676 -2.19596276 -2.17494876 -2.15393476
-2.13292076 -2.11190677 -2.09089277 -2.06987877 -2.04886477 -2.02785078
-2.00683678 -1.98582278 -1.96480878 -1.94379479 -1.92278079 -1.90176679
-1.88075279 -1.85973879 -1.8387248 -1.8177108 -1.7966968 -1.7756828
-1.75466881 -1.73365481 -1.71264081 -1.69162681 -1.67061282 -1.64959882
-1.62858482 -1.60757082 -1.58655683 -1.56554283 -1.54452883 -1.52351483
-1.50250083 -1.48148684 -1.46047284 -1.43945884 -1.41844484 -1.39743085
-1.37641685 -1.35540285 -1.33438885 -1.31337486 -1.29236086 -1.27134686
-1.25033286 -1.22931886 -1.20830487 -1.18729087 -1.16627687 -1.14526287
-1.12424888 -1.10323488 -1.08222088 -1.06120688 -1.04019289 -1.01917889
-0.99816489 -0.97715089 -0.95613689 -0.9351229 -0.9141089 -0.8930949
-0.8720809 -0.85106691 -0.83005291 -0.80903891 -0.78802491 -0.76701092
-0.74599692 -0.72498292 -0.70396892 -0.68295492 -0.66194093 -0.64092693
-0.61991293 -0.59889893 -0.57788494 -0.55687094 -0.53585694 -0.51484294
-0.49382895 -0.47281495 -0.45180095 -0.43078695 -0.40977295 -0.38875896
-0.36774496 -0.34673096 -0.32571696 -0.30470297 -0.28368897 -0.26267497
-0.24166097 -0.22064698 -0.19963298 -0.17861898 -0.15760498 -0.13659098
-0.11557699 -0.09456299 -0.07354899 -0.05253499 -0.031521 -0.010507
0.010507 0.031521 0.05253499 0.07354899 0.09456299 0.11557699
0.13659098 0.15760498 0.17861898 0.19963298 0.22064698 0.24166097
0.26267497 0.28368897 0.30470297 0.32571696 0.34673096 0.36774496
0.38875896 0.40977295 0.43078695 0.45180095 0.47281495 0.49382895
0.51484294 0.53585694 0.55687094 0.57788494 0.59889893 0.61991293
0.64092693 0.66194093 0.68295492 0.70396892 0.72498292 0.74599692
0.76701092 0.78802491 0.80903891 0.83005291 0.85106691 0.8720809
0.8930949 0.9141089 0.9351229 0.95613689 0.97715089 0.99816489
1.01917889 1.04019289 1.06120688 1.08222088 1.10323488 1.12424888
1.14526287 1.16627687 1.18729087 1.20830487 1.22931886 1.25033286
1.27134686 1.29236086 1.31337486 1.33438885 1.35540285 1.37641685
1.39743085 1.41844484 1.43945884 1.46047284 1.48148684 1.50250083
1.52351483 1.54452883 1.56554283 1.58655683 1.60757082 1.62858482
1.64959882 1.67061282 1.69162681 1.71264081 1.73365481 1.75466881
1.7756828 1.7966968 1.8177108 1.8387248 1.85973879 1.88075279
1.90176679 1.92278079 1.94379479 1.96480878 1.98582278 2.00683678
2.02785078 2.04886477 2.06987877 2.09089277 2.11190677 2.13292076
2.15393476 2.17494876 2.19596276 2.21697676 2.23799075 2.25900475
2.28001875 2.30103275 2.32204674 2.34306074 2.36407474 2.38508874
2.40610273 2.42711673 2.44813073 2.46914473 2.49015873 2.51117272
2.53218672 2.55320072 2.57421472 2.59522871 2.61624271 2.63725671
2.65827071 2.6792847 2.7002987 2.7213127 2.7423267 2.7633407
2.78435469 2.80536869 2.82638269 2.84739669 2.86841068 2.88942468
2.91043868 2.93145268 2.95246667 2.97348067 2.99449467 3.01550867
3.03652267 3.05753666 3.07855066 3.09956466 3.12057866 3.14159265]
Python Matplotlib模块--pylab的更多相关文章
- Python Matplotlib模块--pyplot
#-*- coding: utf- -*- ''' numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=No ...
- Windows python 安装 nNumpy、Scipy、matplotlib模块
折腾了 很久,总结一些. 首先如果python 是64位,安装32位的numpy ,Scipy,或者matplotlib 模块. 会出现很多问题. 比如当你 在python 导入 Numpy 时,导入 ...
- python 爬虫与数据可视化--matplotlib模块应用
一.数据分析的目的(利用大数据量数据分析,帮助人们做出战略决策) 二.什么是matplotlib? matplotlib: 最流行的Python底层绘图库,主要做数据可视化图表,名字取材于MATLAB ...
- 为python安装matplotlib模块
matplotlib是python中强大的画图模块. 首先确保已经安装python,然后用pip来安装matplotlib模块. 进入到cmd窗口下,执行python -m pip install - ...
- Python使用matplotlib模块绘制多条折线图、散点图
用matplotlib模块 #!usr/bin/env python #encoding:utf-8 ''' __Author__:沂水寒城 功能:折线图.散点图测试 ''' import rando ...
- windows_64下python下载安装Numpy、Scipy、matplotlib模块
本文应用的python3.6.3及其对应的Numpy.Scipy.matplotlib计算模块的cp36版本,其中Numpy是需要MKL版本的Numpy,这是后续安装Scipy的需要(本机系统win7 ...
- windows下python安装Numpy、Scipy、matplotlib模块(转载)
python下载链接 Numpy下载链接 python中Numpy包的安装及使用 Numpy包的安装 准备工作 Python安装 pip安装 将pip所在的文件夹添加到环境变量path路径中 ...
- python 1: 解决linux系统下python中的matplotlib模块内的pyplot输出图片不能显示中文的问题
问题: 我在ubuntu14.04下用python中的matplotlib模块内的pyplot输出图片不能显示中文,怎么解决呢? 解决: 1.指定默认编码为UTF-8: 在python代码开头加入如下 ...
- Python使用pip安装matplotlib模块
matplotlib是python中强大的画图模块. 首先确保已经安装python,然后用pip来安装matplotlib模块. 进入到cmd窗口下,建议执行python -m pip install ...
随机推荐
- Django之CBV和FBV
Django之CBV和FBV CBV和FBV是C和F的区别: C是Class,F是Function 在请求中,有GET请求和POST请求. 在写CBV时,url是可以对应一个类的,在类中,分别写出GE ...
- Linux 下 Jenkins安装
Jenkins介绍 Jenkins是基于Java开发的一种持续集成工具,用于监控持续重复的工作,功能包括: 1.持续的软件版本发布/测试项目. 2.监控外部调用执行的工作. 安装环境 操作系统:lin ...
- js用for...in 这种遍历的方式
var arr = new Array("first", "second", "third") for(var item in arr) { ...
- 用友NC客户端地址
http://uclient.yonyou.com/liyan5(李艳) 08-23 14:29:41在这里输入http://10.0.0.67:80
- jQuery入门--- 非常好
jQuery入门------https://blog.csdn.net/dkh_321/article/details/78093788
- 慕课笔记利用css进行布局【三列布局】
三个div中间自适应,两侧固定大小 <html> <head> <title>三列布局</title> <style type="tex ...
- Win 2003 创建 IP 安全策略来屏蔽端口的图文教程
(本文用示例的方法讲解 IP 安全策略的设置方法,具体的设置还是要根据个人实际的需要来设置.另外 Windows Server 2008 与此类似.千一网络编辑注) IP安全性(Internet Pr ...
- swagger & api & swagger ui
swagger & api swagger ui # run server $ swagger project start api-app # call api $ curl http://1 ...
- 3D模型
题目描述 一座城市建立在规则的n×m网格上,并且网格均由1×1正方形构成.在每个网格上都可以有一个建筑,建筑由若干个1×1×1的立方体搭建而成(也就是所有建筑的底部都在同一平面上的).几个典型的城市模 ...
- Linux下汇编语言学习笔记15 ---
这是17年暑假学习Linux汇编语言的笔记记录,参考书目为清华大学出版社 Jeff Duntemann著 梁晓辉译<汇编语言基于Linux环境>的书,喜欢看原版书的同学可以看<Ass ...