#-*- coding: utf-8 -*-
'''
subplot(m,n,p):其中,m表示是图排成m行,n表示图排成n列,也就是整个figure中有n个图是排成一行的,一共m行,如果m=2就是表示2行图。p表示图所在的位置,p=1表示从左到右从上到下的第一个位置。
np.random.uniform(0.5,1.0,n):获取 0.5~1.0之间n个随机数
zip(x,y):将x和Y中的数据两两配对最后以列表返回
plt.text(x+0.4, y+0.1, "%.2f"%y, ha="center"):指定文字出现在柱状图上的位置和内容
x+0.4:文字显示横向增加0.4长度
y+0.1:文字显示纵向增加0.1长度
"%.2f"%y:应该显示的内容
@author: soyo
'''
import matplotlib.pylab as plt
import numpy as np
plt.subplot(2,1,1)
n=12
x=np.arange(n)
print x
print x/float(n)
print np.random.uniform(0.5,1.0,n)
y1=(1-x/float(n))*np.random.uniform(0.5,1.0,n)
y2=(1-x/float(n))*np.random.uniform(0.5,1.0,n)
plt.bar(x,+y1,facecolor="red",edgecolor="grey")
plt.bar(x,-y2,facecolor="lightblue",edgecolor="orange")
print y1
for x,y in zip(x,y1):
plt.text(x+0.4, y+0.1, "%.2f"%y, ha="center")
print (x,y)
plt.ylim(-1.25,+1.25)
plt.subplot(2,2,3)
x=np.linspace(-np.pi,np.pi,300, endpoint=True)
print x
sin=np.sinc(x)
cos=np.cos(x)
plt.plot(x,cos,color="red",linewidth=2.7,linestyle="-")
plt.plot(x,sin,color="blue",linewidth=4,linestyle="--")
plt.xlim(x.min()*1.1,x.max()*1.1)
plt.xticks([-np.pi,-np.pi/2,0,np.pi/2,np.pi],[r'$-\pi$',r'$-\pi/2$',r'$0$',r'$+\pi/2$',r'$+\pi$'])
plt.ylim(cos.min()*1.1,cos.max()*1.1)
# plt.yticks([-1,0,1],[r'$-1$',r'$0$',r'$+1$'])
plt.yticks([-1,0,1]) plt.subplot(2,2,4)
m=10
z=np.random.uniform(5,9,6)
plt.pie(z)
plt.show()

结果:

[ 0  1  2  3  4  5  6  7  8  9 10 11]
[ 0. 0.08333333 0.16666667 0.25 0.33333333 0.41666667
0.5 0.58333333 0.66666667 0.75 0.83333333 0.91666667]
[ 0.95962168 0.83510776 0.59960879 0.9103227 0.86161055 0.85219339
0.64341482 0.50396784 0.79940237 0.78113541 0.66371799 0.63459297]
[ 0.65987664 0.87527832 0.79239077 0.61438775 0.44085434 0.38703261
0.40706581 0.2836271 0.25465063 0.20754596 0.124999 0.08099565]
(0, 0.65987664052659789)
(1, 0.87527832104794756)
(2, 0.79239077290271298)
(3, 0.61438775127130618)
(4, 0.44085434356099779)
(5, 0.3870326100974873)
(6, 0.40706580998264275)
(7, 0.2836271049672956)
(8, 0.2546506260468242)
(9, 0.20754596219057092)
(10, 0.12499900221786377)
(11, 0.080995646704109761)
[-3.14159265 -3.12057866 -3.09956466 -3.07855066 -3.05753666 -3.03652267
-3.01550867 -2.99449467 -2.97348067 -2.95246667 -2.93145268 -2.91043868
-2.88942468 -2.86841068 -2.84739669 -2.82638269 -2.80536869 -2.78435469
-2.7633407 -2.7423267 -2.7213127 -2.7002987 -2.6792847 -2.65827071
-2.63725671 -2.61624271 -2.59522871 -2.57421472 -2.55320072 -2.53218672
-2.51117272 -2.49015873 -2.46914473 -2.44813073 -2.42711673 -2.40610273
-2.38508874 -2.36407474 -2.34306074 -2.32204674 -2.30103275 -2.28001875
-2.25900475 -2.23799075 -2.21697676 -2.19596276 -2.17494876 -2.15393476
-2.13292076 -2.11190677 -2.09089277 -2.06987877 -2.04886477 -2.02785078
-2.00683678 -1.98582278 -1.96480878 -1.94379479 -1.92278079 -1.90176679
-1.88075279 -1.85973879 -1.8387248 -1.8177108 -1.7966968 -1.7756828
-1.75466881 -1.73365481 -1.71264081 -1.69162681 -1.67061282 -1.64959882
-1.62858482 -1.60757082 -1.58655683 -1.56554283 -1.54452883 -1.52351483
-1.50250083 -1.48148684 -1.46047284 -1.43945884 -1.41844484 -1.39743085
-1.37641685 -1.35540285 -1.33438885 -1.31337486 -1.29236086 -1.27134686
-1.25033286 -1.22931886 -1.20830487 -1.18729087 -1.16627687 -1.14526287
-1.12424888 -1.10323488 -1.08222088 -1.06120688 -1.04019289 -1.01917889
-0.99816489 -0.97715089 -0.95613689 -0.9351229 -0.9141089 -0.8930949
-0.8720809 -0.85106691 -0.83005291 -0.80903891 -0.78802491 -0.76701092
-0.74599692 -0.72498292 -0.70396892 -0.68295492 -0.66194093 -0.64092693
-0.61991293 -0.59889893 -0.57788494 -0.55687094 -0.53585694 -0.51484294
-0.49382895 -0.47281495 -0.45180095 -0.43078695 -0.40977295 -0.38875896
-0.36774496 -0.34673096 -0.32571696 -0.30470297 -0.28368897 -0.26267497
-0.24166097 -0.22064698 -0.19963298 -0.17861898 -0.15760498 -0.13659098
-0.11557699 -0.09456299 -0.07354899 -0.05253499 -0.031521 -0.010507
0.010507 0.031521 0.05253499 0.07354899 0.09456299 0.11557699
0.13659098 0.15760498 0.17861898 0.19963298 0.22064698 0.24166097
0.26267497 0.28368897 0.30470297 0.32571696 0.34673096 0.36774496
0.38875896 0.40977295 0.43078695 0.45180095 0.47281495 0.49382895
0.51484294 0.53585694 0.55687094 0.57788494 0.59889893 0.61991293
0.64092693 0.66194093 0.68295492 0.70396892 0.72498292 0.74599692
0.76701092 0.78802491 0.80903891 0.83005291 0.85106691 0.8720809
0.8930949 0.9141089 0.9351229 0.95613689 0.97715089 0.99816489
1.01917889 1.04019289 1.06120688 1.08222088 1.10323488 1.12424888
1.14526287 1.16627687 1.18729087 1.20830487 1.22931886 1.25033286
1.27134686 1.29236086 1.31337486 1.33438885 1.35540285 1.37641685
1.39743085 1.41844484 1.43945884 1.46047284 1.48148684 1.50250083
1.52351483 1.54452883 1.56554283 1.58655683 1.60757082 1.62858482
1.64959882 1.67061282 1.69162681 1.71264081 1.73365481 1.75466881
1.7756828 1.7966968 1.8177108 1.8387248 1.85973879 1.88075279
1.90176679 1.92278079 1.94379479 1.96480878 1.98582278 2.00683678
2.02785078 2.04886477 2.06987877 2.09089277 2.11190677 2.13292076
2.15393476 2.17494876 2.19596276 2.21697676 2.23799075 2.25900475
2.28001875 2.30103275 2.32204674 2.34306074 2.36407474 2.38508874
2.40610273 2.42711673 2.44813073 2.46914473 2.49015873 2.51117272
2.53218672 2.55320072 2.57421472 2.59522871 2.61624271 2.63725671
2.65827071 2.6792847 2.7002987 2.7213127 2.7423267 2.7633407
2.78435469 2.80536869 2.82638269 2.84739669 2.86841068 2.88942468
2.91043868 2.93145268 2.95246667 2.97348067 2.99449467 3.01550867
3.03652267 3.05753666 3.07855066 3.09956466 3.12057866 3.14159265]

[ 0  1  2  3  4  5  6  7  8  9 10 11]
[ 0.          0.08333333  0.16666667  0.25        0.33333333  0.41666667
  0.5         0.58333333  0.66666667  0.75        0.83333333  0.91666667]
[ 0.95962168  0.83510776  0.59960879  0.9103227   0.86161055  0.85219339
  0.64341482  0.50396784  0.79940237  0.78113541  0.66371799  0.63459297]
[ 0.65987664  0.87527832  0.79239077  0.61438775  0.44085434  0.38703261
  0.40706581  0.2836271   0.25465063  0.20754596  0.124999    0.08099565]
(0, 0.65987664052659789)
(1, 0.87527832104794756)
(2, 0.79239077290271298)
(3, 0.61438775127130618)
(4, 0.44085434356099779)
(5, 0.3870326100974873)
(6, 0.40706580998264275)
(7, 0.2836271049672956)
(8, 0.2546506260468242)
(9, 0.20754596219057092)
(10, 0.12499900221786377)
(11, 0.080995646704109761)
[-3.14159265 -3.12057866 -3.09956466 -3.07855066 -3.05753666 -3.03652267
 -3.01550867 -2.99449467 -2.97348067 -2.95246667 -2.93145268 -2.91043868
 -2.88942468 -2.86841068 -2.84739669 -2.82638269 -2.80536869 -2.78435469
 -2.7633407  -2.7423267  -2.7213127  -2.7002987  -2.6792847  -2.65827071
 -2.63725671 -2.61624271 -2.59522871 -2.57421472 -2.55320072 -2.53218672
 -2.51117272 -2.49015873 -2.46914473 -2.44813073 -2.42711673 -2.40610273
 -2.38508874 -2.36407474 -2.34306074 -2.32204674 -2.30103275 -2.28001875
 -2.25900475 -2.23799075 -2.21697676 -2.19596276 -2.17494876 -2.15393476
 -2.13292076 -2.11190677 -2.09089277 -2.06987877 -2.04886477 -2.02785078
 -2.00683678 -1.98582278 -1.96480878 -1.94379479 -1.92278079 -1.90176679
 -1.88075279 -1.85973879 -1.8387248  -1.8177108  -1.7966968  -1.7756828
 -1.75466881 -1.73365481 -1.71264081 -1.69162681 -1.67061282 -1.64959882
 -1.62858482 -1.60757082 -1.58655683 -1.56554283 -1.54452883 -1.52351483
 -1.50250083 -1.48148684 -1.46047284 -1.43945884 -1.41844484 -1.39743085
 -1.37641685 -1.35540285 -1.33438885 -1.31337486 -1.29236086 -1.27134686
 -1.25033286 -1.22931886 -1.20830487 -1.18729087 -1.16627687 -1.14526287
 -1.12424888 -1.10323488 -1.08222088 -1.06120688 -1.04019289 -1.01917889
 -0.99816489 -0.97715089 -0.95613689 -0.9351229  -0.9141089  -0.8930949
 -0.8720809  -0.85106691 -0.83005291 -0.80903891 -0.78802491 -0.76701092
 -0.74599692 -0.72498292 -0.70396892 -0.68295492 -0.66194093 -0.64092693
 -0.61991293 -0.59889893 -0.57788494 -0.55687094 -0.53585694 -0.51484294
 -0.49382895 -0.47281495 -0.45180095 -0.43078695 -0.40977295 -0.38875896
 -0.36774496 -0.34673096 -0.32571696 -0.30470297 -0.28368897 -0.26267497
 -0.24166097 -0.22064698 -0.19963298 -0.17861898 -0.15760498 -0.13659098
 -0.11557699 -0.09456299 -0.07354899 -0.05253499 -0.031521   -0.010507
  0.010507    0.031521    0.05253499  0.07354899  0.09456299  0.11557699
  0.13659098  0.15760498  0.17861898  0.19963298  0.22064698  0.24166097
  0.26267497  0.28368897  0.30470297  0.32571696  0.34673096  0.36774496
  0.38875896  0.40977295  0.43078695  0.45180095  0.47281495  0.49382895
  0.51484294  0.53585694  0.55687094  0.57788494  0.59889893  0.61991293
  0.64092693  0.66194093  0.68295492  0.70396892  0.72498292  0.74599692
  0.76701092  0.78802491  0.80903891  0.83005291  0.85106691  0.8720809
  0.8930949   0.9141089   0.9351229   0.95613689  0.97715089  0.99816489
  1.01917889  1.04019289  1.06120688  1.08222088  1.10323488  1.12424888
  1.14526287  1.16627687  1.18729087  1.20830487  1.22931886  1.25033286
  1.27134686  1.29236086  1.31337486  1.33438885  1.35540285  1.37641685
  1.39743085  1.41844484  1.43945884  1.46047284  1.48148684  1.50250083
  1.52351483  1.54452883  1.56554283  1.58655683  1.60757082  1.62858482
  1.64959882  1.67061282  1.69162681  1.71264081  1.73365481  1.75466881
  1.7756828   1.7966968   1.8177108   1.8387248   1.85973879  1.88075279
  1.90176679  1.92278079  1.94379479  1.96480878  1.98582278  2.00683678
  2.02785078  2.04886477  2.06987877  2.09089277  2.11190677  2.13292076
  2.15393476  2.17494876  2.19596276  2.21697676  2.23799075  2.25900475
  2.28001875  2.30103275  2.32204674  2.34306074  2.36407474  2.38508874
  2.40610273  2.42711673  2.44813073  2.46914473  2.49015873  2.51117272
  2.53218672  2.55320072  2.57421472  2.59522871  2.61624271  2.63725671
  2.65827071  2.6792847   2.7002987   2.7213127   2.7423267   2.7633407
  2.78435469  2.80536869  2.82638269  2.84739669  2.86841068  2.88942468
  2.91043868  2.93145268  2.95246667  2.97348067  2.99449467  3.01550867
  3.03652267  3.05753666  3.07855066  3.09956466  3.12057866  3.14159265]

Python Matplotlib模块--pylab的更多相关文章

  1. Python Matplotlib模块--pyplot

    #-*- coding: utf- -*- ''' numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=No ...

  2. Windows python 安装 nNumpy、Scipy、matplotlib模块

    折腾了 很久,总结一些. 首先如果python 是64位,安装32位的numpy ,Scipy,或者matplotlib 模块. 会出现很多问题. 比如当你 在python 导入 Numpy 时,导入 ...

  3. python 爬虫与数据可视化--matplotlib模块应用

    一.数据分析的目的(利用大数据量数据分析,帮助人们做出战略决策) 二.什么是matplotlib? matplotlib: 最流行的Python底层绘图库,主要做数据可视化图表,名字取材于MATLAB ...

  4. 为python安装matplotlib模块

    matplotlib是python中强大的画图模块. 首先确保已经安装python,然后用pip来安装matplotlib模块. 进入到cmd窗口下,执行python -m pip install - ...

  5. Python使用matplotlib模块绘制多条折线图、散点图

    用matplotlib模块 #!usr/bin/env python #encoding:utf-8 ''' __Author__:沂水寒城 功能:折线图.散点图测试 ''' import rando ...

  6. windows_64下python下载安装Numpy、Scipy、matplotlib模块

    本文应用的python3.6.3及其对应的Numpy.Scipy.matplotlib计算模块的cp36版本,其中Numpy是需要MKL版本的Numpy,这是后续安装Scipy的需要(本机系统win7 ...

  7. windows下python安装Numpy、Scipy、matplotlib模块(转载)

    python下载链接     Numpy下载链接 python中Numpy包的安装及使用 Numpy包的安装 准备工作 Python安装 pip安装 将pip所在的文件夹添加到环境变量path路径中 ...

  8. python 1: 解决linux系统下python中的matplotlib模块内的pyplot输出图片不能显示中文的问题

    问题: 我在ubuntu14.04下用python中的matplotlib模块内的pyplot输出图片不能显示中文,怎么解决呢? 解决: 1.指定默认编码为UTF-8: 在python代码开头加入如下 ...

  9. Python使用pip安装matplotlib模块

    matplotlib是python中强大的画图模块. 首先确保已经安装python,然后用pip来安装matplotlib模块. 进入到cmd窗口下,建议执行python -m pip install ...

随机推荐

  1. 基础知识:if条件、while循环、for循环 相关练习

    1.实现用户输入用户名和密码,当用户名为 seven 且 密码为 123 时,显示登陆成功,否则登陆失败! while True: name = input('请输入用户名:') psw = inpu ...

  2. Python 字典(2)

    一.遍历字典 一个字典可能会包含多个键-值对,字典可以以多种方式存储信息,因此有多种遍历字典的方式,比如键-值对.键.值. 1.遍历所有的键-值对 user_01 = {'username':'tiz ...

  3. PID28 [Stupid]愚蠢的宠物

    题链:https://www.rqnoj.cn/problem/28 题目描述 背景 大家都知道,sheep有两只可爱的宠物(一只叫神牛,一只叫神菜).有一天,sheep带着两只宠物到狗狗家时,这两只 ...

  4. Android BottomSheet:底部弹出Fragment面板(4)

     Android BottomSheet:底部弹出Fragment面板(4) BottomSheet不仅可以弹出轻量级的定制好的面板(见附录文章5,6,7),还可以弹出"重"的 ...

  5. CentOS 7.1安装GNOME,开启VNC Server

    版权声明:本文为博主原创文章,未经博主允许不得转载. A.准备: 1.安装GNOME Desktop yum groupinstall 'GNOME Desktop' 2.确认GNOME Deskto ...

  6. [luoguP2401] 不等数列

    传送门 f[i][j]表示前i个数有j个<的方案数 #include <cstdio> #define N 1001 #define p 2015 int n, k; int f[N ...

  7. pandas中计算总体标准差

    标准差(或方差),分为 总体标准差(方差)和 样本标准差(方差). 前者分母为n,后者为n-1.后者是无偏的. pandas里的 .std() 和 .var() 都是算的无偏的. 而numpy是有偏的 ...

  8. ZOJ3956 ZJU2017校赛(dp)

    题意:给出n对(h,c) 记  sumh为选出的h的总和  sumc为选出的c的总和 你可以从中选出任意多对(可以不选) 使得  sumh^2-sumh*sumc-sumc^2 最大 输出最大值 输入 ...

  9. MongoDB小结19 - find【查询条件$all】

    利用all来查询所以满足的匹配项,已知数据库有这些数据 db.user.find({},{"_id":0}) { "fruit" : [ "apple ...

  10. 基于cocos2d开发的android小游戏——採花仙

    /*cocos 2d 已经成为了如今移动端游戏开发的强有力的工具,眼下主流游戏中多採用cocos 2d游戏引擎. 我也尝试了一下该引擎.我是用的是cocos2d-android,以后要移植到Cocos ...