糖果大战

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 1886    Accepted Submission(s): 626

Problem Description
生日Party结束的那天晚上,剩下了一些糖果,Gandon想把所有的都统统拿走,Speakless于是说:“可以是可以,不过我们来玩24点,你不是已经拿到了一些糖果了吗?这样,如果谁赢一局,就拿走对方一颗糖,直到拿完对方所有的糖为止。”如果谁能算出来而对方算不出来,谁就赢,但是如果双方都能算出或者都不能,就算平局,不会有任何糖果的得失。
Speakless是个喜欢提前想问题的人,既然他发起了这场糖果大战,就自然很想赢啦(不然可就要精光了-_-)。现在他需要你的帮忙,给你他每局赢的概率和Gardon每局赢的概率,请你给出他可能获得这场大战胜利的概率。
 
Input
每行有四个数,Speakless手上的糖果数N、Gardon手上的糖果数M(0<=N,M<=50)、一局Speakless能解答出来的概率p、一个问题Gardon能解答出来的概率q(0<=p,q<=1)。
 
Output
每行一个数,表示Speakless能赢的概率(用百分比计算,保留到小数点后2位)。
 
Sample Input
50 50 0.5 0.5
10 10 0.51 0.5
50 50 0.51 0.5
 
Sample Output
0.50
0.60
0.88
 
Author
Speakless
 
Source
 
 #include <stdio.h>
#include <math.h>
int main()
{
int m,n;
double p,q,r,s;
while(scanf("%d %d %lf %lf",&n,&m,&p,&q)!=EOF)
{
if(m == )
printf("%.2lf\n",1.0);
else if(n == )
printf("%.2lf\n",0.0);
else if(p == ||q == )
printf("%.2lf\n",0.0);
else if(p == ||q == )
printf("%.2lf\n",1.0);
else
{
r = q*(-p)/(p*(-q));
if(fabs(r-1.0)<(1e-))
s = n*1.0/(n+m);
else
s = (-pow(r,n))/(-pow(r,m+n));
printf("%.2lf\n",s);
}
}
return ;
}

先来看一个例子,即赌徒输光问题:

赌徒甲有资本a元,赌徒乙有资本b元,两人进行赌博,每赌一局输者给赢者1元,没有和局,直赌至两人中有一人输光为止。设在每一局中,甲获胜的概率为p,乙获胜的概率为q=1-p,求甲先输光的概率。
解:先设c=a+b;  r=q/p;
这个实际上是Markov过程(马尔科夫过程),具体细节不说了,结果就是:

(链接:http://www.cnblogs.com/hsqdboke/archive/2012/03/08/2384769.html

另一种思路:

这是一个概率题,首先我们必须清楚我们要求的是什么!设f(i)表示Speakless有i颗糖果的时候赢的概率,我们要求的就是f(n)
则根据题意我们知道,这时候:
1.Speakless赢这一局的概率是p(1-q),即f(i)变成f(i+1)
2.Speakless输这一局的概率是q(1-p),即f(i)变成f(i-1)
3.Speakless平这一局的概率是1-p(1-q)-q(1-p),即f(i)变成f(i)
因此:
f(i) = p(1-q)*f(i+1) + q(1-p)*f(i-1) + (1-p(1-q)-q(1-p))*f(i)
稍微变形:
p(1-q)*(f(i+1)-f(i)) = q(1-p)*(f(i)-f(i-1))令g(i)=f(i)-f(i-1),
则有p(1-q)*g(i) = q(1-p)g(i-1),即g(i)是等比数列,
设k=q(1-p)/(p(1-q)),则g(i) = k*g(i-1)g(1) = f(1)-f(0)
g(2) = f(1)-f(0)
...
g(n) = f(n)-f(n-1)
...
g(n+m) = f(n+m)-f(n+m-1)
将上面的各个等式相加的:g(1)+g(2)+...+g(n+m)=f(n+m)-f(0)=1
g(1)+g(2)+...+g(n+m)=g(1)*(1-k^(n+m))/(1-k)
g(1)+g(2)+...+g(n)=g(1)*(1-k^(n))/(1-k)
回到开始定义,我们知道f(0)=0 (表示已经输了),f(n+m)=1(表示已经赢了)
g(1)=f(1)-f(0)=f(1)
因此g(1)+g(2)+...+g(n+m) = f(1)*(1-k^(n+m))/(1-k)=1............................................(1)
g(1)+g(2)+...+g(n) = f(1)*(1-k^(n))/(1-k)=f(n)...................................................(2)
我们要求的就是f(n),在(2)式中,只要f(1)是未知的,因此需要更(1)先求出f(1).最终f(n)=(1-k^n)/(1-k^(m+n))需要注意的几个地方:N==0、M==0、p==0、q==0、p==q集中特殊情况!

(链接:http://hi.baidu.com/nicker2010/item/cb20f55ea60de63f94eb05ed

hdu_1024_糖果大战_201404021640的更多相关文章

  1. 糖果大战 hdu1204

    糖果大战 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  2. 【HDOJ】1204 糖果大战

    题目本身不难.类似于dp.f(i)表示手中现有i颗糖果赢的概率,则下一局赢的概率是p(1-q),下一局输的概率是q(1-p),下一句平手的概率是1-p(1-q)-q(1-p),平手包括两人均答对或答错 ...

  3. HDU-1204-糖果大战

    题目描述 生日\(Party\)结束的那天晚上,剩下了一些糖果,\(Gandon\)想把所有的都统统拿走,\(Speakless\)于是说:"可以是可以,不过我们来玩\(24\)点,你不是已 ...

  4. acdream 1682 吃不完的糖果(环形最大子段和)

    Problem Description 娜娜好不容易才在你的帮助下"跳"过了这个湖,果然车到山前必有路,大战之后必有回复,大难不死,必有后福!现在在娜娜面前的就是好多好多的糖果还有 ...

  5. C - 娜娜梦游仙境系列——吃不完的糖果

    C - 娜娜梦游仙境系列——吃不完的糖果 Time Limit: 2000/1000MS (Java/Others)    Memory Limit: 128000/64000KB (Java/Oth ...

  6. 原生js可爱糖果数字时间特效

    效果展示:http://hovertree.com/texiao/js/35/ 数字采用漂亮的糖果皮肤设计 效果图: 代码如下: <!DOCTYPE html> <html> ...

  7. 3D坦克大战游戏源码

    3D坦克大战游戏源码,该游戏是基于xcode 4.3,ios sdk 5.1开发.在xcode4.3.3上完美无报错.兼容ios4.3-ios6.0 ,一款ios平台上难得的3D坦克大战游戏源码,有2 ...

  8. UOJ #58 【WC2013】 糖果公园

    题目链接:糖果公园 听说这是一道树上莫队的入门题,于是我就去写了--顺便复习了一下莫队的各种姿势. 首先,我们要在树上使用莫队,那么就需要像序列一样给树分块.这个分块的过程就是王室联邦这道题(vfle ...

  9. [LeetCode] Candy 分糖果问题

    There are N children standing in a line. Each child is assigned a rating value. You are giving candi ...

随机推荐

  1. 【题解】PIE [POI2015] [P3585]

    [题解]\(PIE\) \([POI2015]\) \([P3585]\) 逼自己每天一道模拟题 传送门:\(PIE\) \([POI2015]\) \([P3585]\) [题目描述] 一张 \(n ...

  2. EditText(4)常用属性详解

    常用的属性: 显示密码 通过设置EditText的setTransformationMethod()方法来实现隐藏密码或这显示密码. editText.setTransformationMethod( ...

  3. Using 10053 Trace Events and get outline

    When it comes to performance tuning, we can spend time on one or both ends of the problem. On the &q ...

  4. android中用Intent传数据,如果用传递的是一个类,就将类实现Parcelable接口

    Parcelable,内存单位,跨进程使用,或者intent传递对象的时候使用.android中用Intent传数据,如果用传递的是一个对象,就将对象实现Parcelable接口,而不是将对象序列化. ...

  5. MAMP中Python安装MySQLdb

    Python 标准数据库接口为 Python DB-API,Python DB-API为开发人员提供了数据库应用编程接口. MySQLdb 是用于Python链接Mysql数据库的接口,它实现了 Py ...

  6. [Windows Server 2003] 初识Windows Server 2003

    ★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com ★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频. ★ 本节我们将带领大家:初次见识W ...

  7. Oracle+struts2实现用户登入并显示访问次数

    实体类: package entity; public class userfo { private int id;//id private String name;//用户名 private Str ...

  8. ubuntu+ngnix+thinkphp pathinfo配置

    一.thinkphp 项目改为pathinfo模式 XXX/ThinkPHP/Conf/convention.php文件中找到 'URL_MODEL' => 1, // URL访问模式,可选参数 ...

  9. 个人觉得比较好用的chrome插件

    印象笔记·悦读 "悦读"可使博文.文章和网页变得简明而又易于阅读.将其保存至印象笔记以便随时随地阅读. Anything to QRcode 通过右键菜单或地址栏按钮将当前页面地址 ...

  10. (转)WKT转换工具terraformers

    http://blog.csdn.net/gisshixisheng/article/details/53150111 概述: 前面的文章中,提到了Arcgis中实现wkt转换为geometry,但是 ...