糖果大战

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 1886    Accepted Submission(s): 626

Problem Description
生日Party结束的那天晚上,剩下了一些糖果,Gandon想把所有的都统统拿走,Speakless于是说:“可以是可以,不过我们来玩24点,你不是已经拿到了一些糖果了吗?这样,如果谁赢一局,就拿走对方一颗糖,直到拿完对方所有的糖为止。”如果谁能算出来而对方算不出来,谁就赢,但是如果双方都能算出或者都不能,就算平局,不会有任何糖果的得失。
Speakless是个喜欢提前想问题的人,既然他发起了这场糖果大战,就自然很想赢啦(不然可就要精光了-_-)。现在他需要你的帮忙,给你他每局赢的概率和Gardon每局赢的概率,请你给出他可能获得这场大战胜利的概率。
 
Input
每行有四个数,Speakless手上的糖果数N、Gardon手上的糖果数M(0<=N,M<=50)、一局Speakless能解答出来的概率p、一个问题Gardon能解答出来的概率q(0<=p,q<=1)。
 
Output
每行一个数,表示Speakless能赢的概率(用百分比计算,保留到小数点后2位)。
 
Sample Input
50 50 0.5 0.5
10 10 0.51 0.5
50 50 0.51 0.5
 
Sample Output
0.50
0.60
0.88
 
Author
Speakless
 
Source
 
 #include <stdio.h>
#include <math.h>
int main()
{
int m,n;
double p,q,r,s;
while(scanf("%d %d %lf %lf",&n,&m,&p,&q)!=EOF)
{
if(m == )
printf("%.2lf\n",1.0);
else if(n == )
printf("%.2lf\n",0.0);
else if(p == ||q == )
printf("%.2lf\n",0.0);
else if(p == ||q == )
printf("%.2lf\n",1.0);
else
{
r = q*(-p)/(p*(-q));
if(fabs(r-1.0)<(1e-))
s = n*1.0/(n+m);
else
s = (-pow(r,n))/(-pow(r,m+n));
printf("%.2lf\n",s);
}
}
return ;
}

先来看一个例子,即赌徒输光问题:

赌徒甲有资本a元,赌徒乙有资本b元,两人进行赌博,每赌一局输者给赢者1元,没有和局,直赌至两人中有一人输光为止。设在每一局中,甲获胜的概率为p,乙获胜的概率为q=1-p,求甲先输光的概率。
解:先设c=a+b;  r=q/p;
这个实际上是Markov过程(马尔科夫过程),具体细节不说了,结果就是:

(链接:http://www.cnblogs.com/hsqdboke/archive/2012/03/08/2384769.html

另一种思路:

这是一个概率题,首先我们必须清楚我们要求的是什么!设f(i)表示Speakless有i颗糖果的时候赢的概率,我们要求的就是f(n)
则根据题意我们知道,这时候:
1.Speakless赢这一局的概率是p(1-q),即f(i)变成f(i+1)
2.Speakless输这一局的概率是q(1-p),即f(i)变成f(i-1)
3.Speakless平这一局的概率是1-p(1-q)-q(1-p),即f(i)变成f(i)
因此:
f(i) = p(1-q)*f(i+1) + q(1-p)*f(i-1) + (1-p(1-q)-q(1-p))*f(i)
稍微变形:
p(1-q)*(f(i+1)-f(i)) = q(1-p)*(f(i)-f(i-1))令g(i)=f(i)-f(i-1),
则有p(1-q)*g(i) = q(1-p)g(i-1),即g(i)是等比数列,
设k=q(1-p)/(p(1-q)),则g(i) = k*g(i-1)g(1) = f(1)-f(0)
g(2) = f(1)-f(0)
...
g(n) = f(n)-f(n-1)
...
g(n+m) = f(n+m)-f(n+m-1)
将上面的各个等式相加的:g(1)+g(2)+...+g(n+m)=f(n+m)-f(0)=1
g(1)+g(2)+...+g(n+m)=g(1)*(1-k^(n+m))/(1-k)
g(1)+g(2)+...+g(n)=g(1)*(1-k^(n))/(1-k)
回到开始定义,我们知道f(0)=0 (表示已经输了),f(n+m)=1(表示已经赢了)
g(1)=f(1)-f(0)=f(1)
因此g(1)+g(2)+...+g(n+m) = f(1)*(1-k^(n+m))/(1-k)=1............................................(1)
g(1)+g(2)+...+g(n) = f(1)*(1-k^(n))/(1-k)=f(n)...................................................(2)
我们要求的就是f(n),在(2)式中,只要f(1)是未知的,因此需要更(1)先求出f(1).最终f(n)=(1-k^n)/(1-k^(m+n))需要注意的几个地方:N==0、M==0、p==0、q==0、p==q集中特殊情况!

(链接:http://hi.baidu.com/nicker2010/item/cb20f55ea60de63f94eb05ed

hdu_1024_糖果大战_201404021640的更多相关文章

  1. 糖果大战 hdu1204

    糖果大战 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  2. 【HDOJ】1204 糖果大战

    题目本身不难.类似于dp.f(i)表示手中现有i颗糖果赢的概率,则下一局赢的概率是p(1-q),下一局输的概率是q(1-p),下一句平手的概率是1-p(1-q)-q(1-p),平手包括两人均答对或答错 ...

  3. HDU-1204-糖果大战

    题目描述 生日\(Party\)结束的那天晚上,剩下了一些糖果,\(Gandon\)想把所有的都统统拿走,\(Speakless\)于是说:"可以是可以,不过我们来玩\(24\)点,你不是已 ...

  4. acdream 1682 吃不完的糖果(环形最大子段和)

    Problem Description 娜娜好不容易才在你的帮助下"跳"过了这个湖,果然车到山前必有路,大战之后必有回复,大难不死,必有后福!现在在娜娜面前的就是好多好多的糖果还有 ...

  5. C - 娜娜梦游仙境系列——吃不完的糖果

    C - 娜娜梦游仙境系列——吃不完的糖果 Time Limit: 2000/1000MS (Java/Others)    Memory Limit: 128000/64000KB (Java/Oth ...

  6. 原生js可爱糖果数字时间特效

    效果展示:http://hovertree.com/texiao/js/35/ 数字采用漂亮的糖果皮肤设计 效果图: 代码如下: <!DOCTYPE html> <html> ...

  7. 3D坦克大战游戏源码

    3D坦克大战游戏源码,该游戏是基于xcode 4.3,ios sdk 5.1开发.在xcode4.3.3上完美无报错.兼容ios4.3-ios6.0 ,一款ios平台上难得的3D坦克大战游戏源码,有2 ...

  8. UOJ #58 【WC2013】 糖果公园

    题目链接:糖果公园 听说这是一道树上莫队的入门题,于是我就去写了--顺便复习了一下莫队的各种姿势. 首先,我们要在树上使用莫队,那么就需要像序列一样给树分块.这个分块的过程就是王室联邦这道题(vfle ...

  9. [LeetCode] Candy 分糖果问题

    There are N children standing in a line. Each child is assigned a rating value. You are giving candi ...

随机推荐

  1. python re的使用

    re 正则表达式操作  本模块提供了类似于Perl的正则表达式匹配操作.要匹配的模式和字符串可以是Unicode字符串以及8位字符串. 正则表达式使用反斜杠字符('\')来表示特殊的形式或者来允许使用 ...

  2. java自学-方法

    上节介绍了流程控制语句,一个复杂的业务逻辑会由很多java代码组成,包含许多功能.比如说购物业务,就包含选商品.下单.支付等功能,如果这些功能的代码写到一起,就会显得很臃肿,可读性非常不好.java提 ...

  3. python自动化测试学习笔记-9python的日志模块

    参考 logging模块,用来处理python中的日志: import logging logging.debug('debug')logging.info('info')logging.warnin ...

  4. 基于itchat实现微信群消息同步机器人

    原始网址:http://www.jianshu.com/p/7aeadca0c9bd# 最近 全栈数据工程师养成攻略 的微信群已经将近500人,开了二群之后为了打通不同微信群之间的消息,花了点时间做了 ...

  5. Hadoop Hive概念学习系列之hive的数据压缩(七)

    Hive文件存储格式包括以下几类: 1.TEXTFILE 2.SEQUENCEFILE 3.RCFILE 4.ORCFILE 其中TEXTFILE为默认格式,建表时不指定默认为这个格式,导入数据时会直 ...

  6. 构建一个.net的干货类库,以便于快速的开发 - 工具类

    相信每一个开发的框架都会有一个工具类,工具类的作用有很多,通常我会将最常用的方法放在工具类里 取得用户IP 取得网站根目录的物理路径 枚举相关 非法关键字检查 绝对路径改为相对路径 获取小数位(四舍五 ...

  7. 19 C#循环语句的跳过和中断 continue和break

    在C#的循环语句中,有的时候我们希望跳过其中某个循环,有时我们希望当某个条件满足时,直接终止整个循环.C#为我们提供了 continue;和break;语句. continue和break的用法一样, ...

  8. 常用的几个Dos命令-持续更新中

    1.服务相关 (1).查看服务 C:\Windows\system32>net start 已经启动以下 Windows 服务: (2).启动服务 C:\Windows\system32> ...

  9. hihocoder offer收割编程练习赛13 D 骑士游历

    思路: 矩阵快速幂. 实现: #include <iostream> #include <cstdio> #include <vector> using names ...

  10. 2105. [NOIP2015] 信息传递

    ★☆   输入文件:2015message.in   输出文件:2015message.out   简单对比 时间限制:1 s   内存限制:256 MB [题目描述] 有n个同学(编号为1到n)正在 ...