Apple Tree POJ - 2486

题目大意:一棵点带权有根树,根节点为1。从根节点出发,走k步,求能收集的最大权值和。

树形dp。复杂度可能是O(玄学),不会超过$O(nk^2)$。(反正这题不卡这个,考思想)参考

ans[i][j][0]表示i点以下共走j步,不回来,可能收集到最大的权值
ans[i][j][1]表示i点以下共走j步,回来,可能收集到最大的权值

比较复杂的是,每个节点(以下称当前节点)从其子节点转移的时候,需要用一个背包:

t[i][j][0]表示当前节点的前i个子节点共走j步,不回来
t[i][j][1]表示当前节点的前i个子节点共走j步,回来

对于t[i][j][0],要么是当前节点的前i-1个子节点共走j步(包括去和回来前面的子节点所用步数),在之前就不回来;

要么是前i-1个子节点共走j-p步(包括去和回来前面的子节点所用步数),当前节点走到第i个子节点用1步,第i个子节点向下走p-1步,不回来;

要么是花一步走到第i个子节点,在第i个子节点往下走p-2步,再花一步走回当前节点,再在前i-1个子节点中走j-p步(包括去和回来前面的子节点所用步数)并且不回来。

因此t[i][j][0]=max(t[i-1][j][0],max{t[i-1][j-p][1]+ans[nowson][p-1][0]},max{t[i-1][j-p][0]+ans[nowson][p-2][1]})

对于t[i][j][1],要么是前i-1个子节点共走j-p步(包括去和回来前面的子节点所用步数),走到第i个子节点花1步,第i个子节点向下走用p-2步并回来,从第i个子节点回来花一步;要么是前i-1个子节点共走j步(包括去和回来前面的子节点所用步数),回来。

因此t[i][j][1]=max(t[i-1][j][1],max{t[i-1][j-p][1]+ans[nowson][p-2][1]})

当然实际求解的时候并不需要每个节点开一个t数组,只需要在ans数组上直接做就行了。就是先对t数组求解过程用滚动数组优化,那么只需要两维t[j][0/1]。这时只需要把ans[当前节点]的数组当做t去做就行了。另外,求解t数组的边界要注意一下。另外,t数组再求解前就全部初始化成当前节点权值就行了。

最终答案很显然:max(ans[1][k][0],ans[1][k][1])。

曾经错误:

naive的转移方程:

t[i][j][0]=max(t[i-1][j][0],t[i-1][j-p][0],t[i-1][j-p][1]+ans[son][p][0])
t[i][j][1]=max(t[i-1][j][1],t[i-1][j-p][1]+ans[son][p][1])

事实上,这道题转移t[i][j][0]的第3种(标红的)情况很容易遗漏。另外,很容易忽略走去与走回子节点花费的1或2步。

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct Edge
{
int to,next;
}edge[];
int ne,ans[][][],f1[];
int a[];
int n,k;
bool vis[];
void dfs(int u)
{
int j,kk=f1[u],p,v;
vis[u]=true;
for(j=;j<=k;j++)
ans[u][j][]=ans[u][j][]=a[u];
while(kk!=)
{
v=edge[kk].to;
if(!vis[v])
{
dfs(v);
for(j=k;j>=;j--)
{
for(p=;p<=j;p++)
ans[u][j][]=max(ans[u][j][],max(ans[u][j-p][]+ans[v][p-][],ans[u][j-p][]+ans[v][p-][]));
for(p=;p<=j;p++)
ans[u][j][]=max(ans[u][j][],ans[u][j-p][]+ans[v][p-][]);
}
}
kk=edge[kk].next;
}
}
int main()
{
int i,ta,tb;
while(scanf("%d%d",&n,&k)==)
{
ne=;
memset(ans,,sizeof(ans));
memset(vis,,sizeof(vis));
memset(f1,,sizeof(f1));
for(i=;i<=n;i++)
scanf("%d",&a[i]);
for(i=;i<n;i++)
{
scanf("%d%d",&ta,&tb);
edge[++ne].to=tb;
edge[ne].next=f1[ta];
f1[ta]=ne;
edge[++ne].to=ta;
edge[ne].next=f1[tb];
f1[tb]=ne;
}
dfs();
printf("%d\n",max(ans[][k][],ans[][k][]));
}
return ;
}

Apple Tree POJ - 2486的更多相关文章

  1. E - Apple Tree POJ - 2486

    E - Apple Tree POJ - 2486 Wshxzt is a lovely girl. She likes apple very much. One day HX takes her t ...

  2. Apple Tree POJ - 2486 (树形dp)

    题目链接: D - 树形dp  POJ - 2486 题目大意:一颗树,n个点(1-n),n-1条边,每个点上有一个权值,求从1出发,走V步,最多能遍历到的权值 学习网址:https://blog.c ...

  3. Apple Tree POJ - 3321 dfs序列构造树状数组(好题)

    There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow in the tree. ...

  4. 【POJ 2486】 Apple Tree (树形DP)

    Apple Tree Description Wshxzt is a lovely girl. She likes apple very much. One day HX takes her to a ...

  5. 【POJ 2486】 Apple Tree(树型dp)

    [POJ 2486] Apple Tree(树型dp) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8981   Acce ...

  6. POJ 2486 Apple Tree

    好抽象的树形DP......... Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6411 Accepte ...

  7. poj 2486 Apple Tree(树形DP 状态方程有点难想)

    Apple Tree Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9808   Accepted: 3260 Descri ...

  8. poj 2408 Apple Tree

    http://poj.org/problem?id=2486 典型的回溯题目:特别是状态方程用三维的来标记是否要走回路. 题意:一颗树,n个点(1-n),n-1条边,每个点上有一个权值,求从1出发,走 ...

  9. POJ - 3321 Apple Tree (线段树 + 建树 + 思维转换)

    id=10486" target="_blank" style="color:blue; text-decoration:none">POJ - ...

随机推荐

  1. Org-mode五分钟教程ZZZ

    Table of Contents 1 源起 2 简介 2.1 获取 org-mode 2.2 安装 3 基础用法 3.1 创建一个新文件 3.2 简单的任务列表 3.3 使用标题组织一篇文章 3.4 ...

  2. delphi 的结构体对齐关键字

    Align fields (Delphi)   Go Up to Delphi Compiler Directives (List) Index Type Switch Syntax {$A+}, { ...

  3. CentOS 5 全功能服务器搭建

    转自: http://www.php-oa.com/2007/12/27/centos-www.html 转:主要做为历史记录,以后用.另外很少见这么好的编译的文章,其实我不推荐用编译安装.但这个文章 ...

  4. ym——优化你的Java代码(新)

    转载请注明本文出自Cym的博客(http://blog.csdn.net/cym492224103),谢谢支持! 1.面向对象的3要素. 2.面向对象开发的6大原则. 1.单一职责原则 应该有且仅有一 ...

  5. 数据库建表参考(SQL Server)

      (1).字段设置为Not Null+Default Value.原因:减少三值判断,可为Null的字段要多判断null:另外,定长字段为null也占空间,变长字段为空字符串也是不占空间,所以设置成 ...

  6. 从CakePHP 1.3升级到2.5

    从CakePHP 1.3升级到2.5 摘要:最近把一个CakePHP 1.3的项目升级到了2.x,当然就用最新的版本2.5.3了,结果基本满意.本文记录了升级的过程,包括使用的工具,遇到的问题和相应的 ...

  7. Python开发【第2节】【Python运算符】

    Python语言支持以下类型的运算符: 算术运算符 比较(关系)运算符 赋值运算符 逻辑运算符 位运算符 成员运算符 身份运算符 运算符优先级 1.算术运算符 假设变量a = 10,变量b = 21: ...

  8. 'cmd' 不是内部或外部命令,也不是可运行的程序 或批处理文件。

    'cmd' 不是内部或外部命令,也不是可运行的程序或批处理文件. Path 添加 %SystemRoot%/system32;%SystemRoot%;%SystemRoot%/System32/Wb ...

  9. 有关MAC、PHY和MII

    这是一篇转载,原文链接:http://www.cppblog.com/totti1006/archive/2008/04/22/47829.html 以太网(Ethernet)是一种计算机局域网组网技 ...

  10. echo 到 stderr

    This question is old, but you could do this, which facilitates reading: >&2 echo "error& ...