Poj 3264 Balanced Lineup RMQ模板
题目链接:
题目描述:
给出一个n个数的序列,有q个查询,每次查询区间[l, r]内的最大值与最小值的绝对值。
解题思路:
很模板的RMQ模板题,在这里总结一下RMQ:RMQ(Range Minimum/Maximum Query) 即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大值。
RMQ有三种求法:1:直接遍历查找,炒鸡暴力;
2:线段树也可以解决这一类问题;
3:ST(Sparse Table)算法:在线处理RMQ问题,可以做到O(n*log(n))内预处理,O(1)内查询到所要结果。
对于ST(Sparse Table)算法,预处理的时候用的是DP思想,用一个二维数组dp[i][j]记录区间[i,i+2^j-1] (持续2^j个)区间中的最小值(其中dp[i,0] = a[i])
对于任意的一组(i,j),dp[i][j] = min{dp[i][j-1],dp[i+2^(j-1)][j-1]}来使用动态规划计算出来。最优美的地方还在与查询的时候,对于区间[m, n],可以找到一个k,k满足 n-m+1 < 2^(k+1),然后ans = min {dp[m][m+2^k-1], [n-2^k+1][n]},区间[m,m+2^k-1]和[n-2^k+1,n]内的最值我们是预处理过的,所以在O(1)的时间内就可以找到ans咯。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; const int maxn = ;
int dmin[maxn][], dmax[maxn][];
int arr[maxn]; void RMQ_init (int n)
{
for (int i=; i<n; i++)
dmin[i][] = dmax[i][] = arr[i]; for (int j=; (<<j)<=n; j++)
for (int i=; i+(<<j)-<n; i++)
{
dmin[i][j] = min (dmin[i][j-], dmin[i+(<<(j-))][j-]);
dmax[i][j] = max (dmax[i][j-], dmax[i+(<<(j-))][j-]);
}
}
int solve (int a, int b)
{
int x = ;
while (<<(x+) <= b-a+) x++;
int Max = max (dmax[a][x], dmax[b-(<<x)+][x]);
int Min = min (dmin[a][x], dmin[b-(<<x)+][x]);
return Max - Min;
} int main ()
{
int n, q, a, b;
while (scanf ("%d %d", &n, &q) != EOF)
{
for (int i=; i<n; i++)
scanf ("%d", &arr[i]);
RMQ_init( n );
while (q --)
{
scanf ("%d %d", &a, &b);
printf ("%d\n", solve(a-, b-));
}
}
return ;
}
Poj 3264 Balanced Lineup RMQ模板的更多相关文章
- POJ 3264 Balanced Lineup(模板题)【RMQ】
<题目链接> 题目大意: 给定一段序列,进行q次询问,输出每次询问区间的最大值与最小值之差. 解题分析: RMQ模板题,用ST表求解,ST表用了倍增的原理. #include <cs ...
- poj 3264 Balanced Lineup (RMQ)
/******************************************************* 题目: Balanced Lineup(poj 3264) 链接: http://po ...
- POJ - 3264 Balanced Lineup (RMQ问题求区间最值)
RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j里的最小(大)值,也就 ...
- poj 3264 Balanced Lineup (RMQ算法 模板题)
RMQ支持操作: Query(L, R): 计算Min{a[L],a[L+1], a[R]}. 预处理时间是O(nlogn), 查询只需 O(1). RMQ问题 用于求给定区间内的最大值/最小值问题 ...
- POJ 3264 Balanced Lineup -- RMQ或线段树
一段区间的最值问题,用线段树或RMQ皆可.两种代码都贴上:又是空间换时间.. RMQ 解法:(8168KB 1625ms) #include <iostream> #include < ...
- POJ 3264 Balanced Lineup RMQ ST算法
题意:有n头牛,编号从1到n,每头牛的身高已知.现有q次询问,每次询问给出a,b两个数.要求给出编号在a与b之间牛身高的最大值与最小值之差. 思路:标准的RMQ问题. RMQ问题是求给定区间内的最值问 ...
- POJ 3264 Balanced Lineup 【ST表 静态RMQ】
传送门:http://poj.org/problem?id=3264 Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total S ...
- POJ 3264 Balanced Lineup(RMQ)
点我看题目 题意 :N头奶牛,Q次询问,然后给你每一头奶牛的身高,每一次询问都给你两个数,x y,代表着从x位置上的奶牛到y位置上的奶牛身高最高的和最矮的相差多少. 思路 : 刚好符合RMQ的那个求区 ...
- poj 3264 Balanced Lineup(RMQ裸题)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 43168 Accepted: 20276 ...
随机推荐
- 【.Net Core 学习系列】-- EF Core 实践(Code First)
一.开发环境: VS2015, .Net Core 1.0.0-preview2-003156 二解决方案: 新建项目: File --> New --> Project --> ...
- jmeter的master远程运行和停止slave
jmeter可以部署成master-slave或者叫client-server模式,一个master(client)可以同时控制多个slave(server). 在linux系统下,master(cl ...
- Windows环境下QWT安装及配置
** 1.QWT下载路径 **:https://sourceforge.net/projects/qwt/ 主要下载这三个文件:qwt-6.1.2.zip.qwt-6.1.2.pdf,qwt-6.1. ...
- UVA 10288 - Coupons(概率递推)
UVA 10288 - Coupons option=com_onlinejudge&Itemid=8&page=show_problem&category=482&p ...
- Win32 Windows编程 七
定时器消息 1. WM_TIMER 依照定时器设置的时间段,自己主动向窗体发送一个定时器消息WM_TIMER.优先级比較低 定时器精度比較低.毫秒级别.消息产生时间也精度比較低 2 .消息和函数 WM ...
- Unity即将到来的2D工具
孙广东 2015.7.5 看了一下对功能介绍的视频,确实功能强大. 可是须要FQ在youtube上观看,所以就下载下来了.能够浏览一下: http://www.iqiyi.com/playlist2 ...
- envoy
微服务意味着网络更加依赖于服务抽象边界. 随着相互依赖的服务数量日渐增长,系统100%没问题的时间会变少,整个系统经常有部分功能处于降级状态.
- Semantic Parsing(语义分析) Knowledge base(知识图谱) 对用户的问题进行语义理解 信息检索方法
简单说一下所谓Knowledge base(知识图谱)有两条路走,一条是对用户的问题进行语义理解,一般用Semantic Parsing(语义分析),语义分析有很多种,比如有用CCG.DCS,也有用机 ...
- scikit-learn(1) 第一个例子说明
第一个 scikit-learn例子 ................................................................................. ...
- go---weichart个人对Golang中并发理解
个人觉得goroutine是Go并行设计的核心,goroutine是协程,但比线程占用更少.golang对并发的处理采用了协程的技术.golang的goroutine就是协程的实现. 十几个gorou ...