题解

感觉是一道神题,想不出来

问最后\(1\)号猎人存活的概率

发现根本没法记录状态

每次转移的分母也都不一样

可以考虑这样一件事情:

如果一个人被打中了

那么不急于从所有人中将ta删除,而是给ta打上一个标记,然后继续保留

下一回合如果打中的是一个已经死掉的就继续打

直到打到一个活的为止

可以发现这玩意儿可以是一个无限的东西

那么什么东西是收敛的可以求无线项的值?

等比数列!

那么我们就可以将分母确定下来了

考虑一个容斥:

枚举一个集合\(S\)表示的是至少有这\(i\)个人在1号猎人被打死之后才被打死

用\(W\)表示选定的这个集合的权值和,\(w_1\)表示1号猎人的权值,\(Sum\)表示总权值和

那么这个东西对答案的贡献就是

\((-1)^{|S|}\sum_{i=0}^{inf}{(1-\frac{W+w_1}{Sum})^i\frac{w_1}{W+w_1}}\)

也就是前i枪去打那些没有被钦定的猎人,打完\(i\)枪之后一枪打死\(1\)号猎人的概率

这玩意儿化简一下,等比数列的和\(=\frac{首项}{1-公比}\)

化出来的就是这个东西\((-1)^{|S|}\sum_{i=0}^{inf}{\frac{w_1}{W+w_1}}\)

那么问题就是怎么计算这个集合的大小以及权值和

我们可以考虑背包

直接求出这种权值和的方案的系数

\(f[i][j]\)表示从前\(i\)个猎人中选择了权值和为\(j\)的系数

因为每次选择一个猎人都会使得符号发生改变

所以\(dp\)式子也就是\(f[i][j]=f[i-1][j]-f[i-1][j-w_i]\)

那么这样就可以得到一个\(O(n^2)\)的dp

考虑生成函数

通过上面的dp可以发现对于每一个点权\(w_i\)

,ta的生成函数就是\(1-x^{w_i}\)

那么答案就是\(\prod(1-x^{w_i})\)

分治一下写个\(NTT\)就过了

代码

#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
# define LL long long
# define ls (now << 1)
# define rs (now << 1 | 1)
const int M = 400005 ;
const int mod = 998244353 ;
const int G = 3 ;
const int Gi = mod / G + 1 ;
using namespace std ; inline int read() {
char c = getchar() ; int x = 0 , w = 1 ;
while(c>'9'||c<'0') { if(c=='-') w = -1 ; c = getchar() ; }
while(c>='0'&&c<='9') { x=x*10+c-'0' ; c = getchar() ; }
return x*w ;
} int n , m , ans ;
int len , lim = 1 , rev[M] , val[M] ;
LL inv[M][2] ;
vector < LL > vec[M] ;
inline LL Fpw(LL Base , LL k) {
int temp = 1 ;
while(k) {
if(k & 1) temp = temp * Base % mod ;
Base = Base * Base % mod ; k >>= 1 ;
}
return temp ;
} inline void NTT(vector < LL > &A , int unit) {
for(int i = 0 ; i < lim ; i ++) if(rev[i] > i) swap(A[i] , A[rev[i]]) ;
for(int mid = 1 ; mid < lim ; (mid <<= 1)) {
int R = (mid << 1) ; LL W = inv[R][unit] ;
for(int j = 0 ; j < lim ; j += R) {
LL w = 1 ;
for(int k = 0 ; k < mid ; k ++ , w = (w * W) % mod) {
LL x = A[j + k] , y = w * A[j + k + mid] % mod ;
A[j + k] = (x + y) % mod ; A[j + k + mid] = (x - y) % mod ;
}
}
}
}
inline void pushup(int now) {
if(vec[ls].empty()) vec[now] = vec[rs] ;
else if(vec[rs].empty()) vec[now] = vec[ls] ;
else {
int sz = vec[ls].size() + vec[rs].size() ;
lim = 1 ; len = 0 ;
while(lim <= sz) lim <<= 1 , ++ len ;
for(int i = 0 ; i <= lim ; i ++) rev[i] = ((rev[i >> 1] >> 1) | ((i & 1) << (len - 1))) ;
vec[ls].resize(lim + 1) ; vec[rs].resize(lim + 1) ; vec[now].resize(lim + 1) ;
NTT(vec[ls] , 1) ; NTT(vec[rs] , 1) ;
for(int i = 0 ; i <= lim ; i ++)
vec[now][i] = (vec[ls][i] * vec[rs][i]) % mod ;
NTT(vec[now] , 0) ; LL tinv = Fpw(lim , mod - 2) ;
for(int i = 0 ; i <= sz ; i ++)
vec[now][i] = (vec[now][i] * tinv % mod + mod) % mod ;
vec[now].resize(sz) ;
}
vec[ls].clear() ; vec[rs].clear() ;
}
void Solve(int l , int r , int now) {
if(l == r) {
vec[now].resize(val[l] + 1) ;
vec[now][0] = 1 ; vec[now][val[l]] = -1 ;
return ;
}
int mid = (l + r) >> 1 ;
Solve(l , mid , ls) ;
Solve(mid + 1 , r , rs) ;
pushup(now) ;
} int main() {
n = read() ;
for(int i = 1 ; i <= n ; i ++) {
val[i] = read() ;
if(i > 1) m += val[i] ;
}
for(int i = 1 ; i <= 400000 ; (i <<= 1)) {
inv[i][1] = Fpw(G , (mod - 1) / i) ;
inv[i][0] = Fpw(Gi , (mod - 1) / i) ;
}
Solve(2 , n , 1) ;
for(int i = 0 ; i <= m ; i ++) {
if(!vec[1][i]) continue ;
ans = ((ans + vec[1][i] * val[1] % mod * Fpw(i + val[1] , mod - 2) % mod) % mod + mod) % mod ;
}
printf("%d\n",ans) ;
return 0 ;
}

[PKUWC2018]猎人杀的更多相关文章

  1. LOJ2541 PKUWC2018 猎人杀 期望、容斥、生成函数、分治

    传送门 首先,每一次有一个猎人死亡之后\(\sum w\)会变化,计算起来很麻烦,所以考虑在某一个猎人死亡之后给其打上标记,仍然计算他的\(w\),只是如果打中了一个打上了标记的人就重新选择.这样对应 ...

  2. LOJ2541 PKUWC2018猎人杀(概率期望+容斥原理+生成函数+分治NTT)

    考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #i ...

  3. 洛谷 P5644 - [PKUWC2018]猎人杀(分治+NTT)

    题面传送门 很久之前(2020 年)就听说过这题了,这么经典的题怎么能只听说而亲自做一遍呢 首先注意到每次开枪打死一个猎人之后,打死其他猎人概率的分母就会发生变化,这将使我们维护起来非常棘手,因此我们 ...

  4. [LOJ2541][PKUWC2018]猎人杀(容斥+分治+FFT)

    https://blog.csdn.net/Maxwei_wzj/article/details/80714129 n个二项式相乘可以用分治+FFT的方法,使用空间回收可以只开log个数组. #inc ...

  5. 【洛谷5644】[PKUWC2018] 猎人杀(容斥+生成函数+分治NTT)

    点此看题面 大致题意: 有\(n\)个人相互开枪,每个人有一个仇恨度\(a_i\),每个人死后会开枪再打死另一个还活着的人,且第一枪由你打响.设当前剩余人仇恨度总和为\(k\),则每个人被打中的概率为 ...

  6. [LOJ2541] [PKUWC2018] 猎人杀

    题目链接 LOJ:https://loj.ac/problem/2541 Solution 很巧妙的思路. 注意到运行的过程中概率的分母在不停的变化,这样会让我们很不好算,我们考虑这样转化:假设所有人 ...

  7. 题解-PKUWC2018 猎人杀

    Problem loj2541 题意概要:给定 \(n\) 个人的倒霉度 \(\{w_i\}\),每回合会有一个人死亡,每个人这回合死亡的概率为 自己的倒霉度/目前所有存活玩家的倒霉度之和,求第 \( ...

  8. 「PKUWC2018」猎人杀

    「PKUWC2018」猎人杀 解题思路 首先有一个很妙的结论是问题可以转化为已经死掉的猎人继续算在概率里面,每一轮一直开枪直到射死一个之前没死的猎人为止. 证明,设所有猎人的概率之和为 \(W\) , ...

  9. 【LOJ2541】【PKUWC2018】猎人杀(容斥,FFT)

    [LOJ2541][PKUWC2018]猎人杀(容斥,FFT) 题面 LOJ 题解 这题好神仙啊. 直接考虑概率很麻烦,因为分母总是在变化. 但是,如果一个人死亡之后,我们不让他离场,假装给他打一个标 ...

随机推荐

  1. XP 系统如何安装.NET Framework4.0

    1 运行CMD,然后输入命令net stop WuAuServ   2 打开C盘的Windows目录,然后找到SoftwareDistribution文件夹改名为SDold.   3 在CMD窗口中输 ...

  2. Deepin-安装QQ音乐(Windows程序)

    打开命令行,输入: sudo apt-get install wine 安装完成后,下载QQ音乐的安装包 然后安装 示例:wine xx.exe 实例:wine QQMusic.exe 安装完成,启动 ...

  3. 【Mongodb教程 第七课 】MongoDB 查询文档

    find() 方法 要从MongoDB 查询集合数据,需要使用MongoDB 的 find() 方法. 语法 基本的find()方法语法如下 >db.COLLECTION_NAME.find() ...

  4. JS地区四级级联

    <script type="text/javascript" src="../js/jsAddress.js"></script> &l ...

  5. 阿里云 oss 小文件上传进度显示

    对阿里云OSS上传小文件时的进度,想过两个方法:一是.通过多线程监測Inputstream剩余的字节数来计算,可是由于Inputstream在两个线程中共用,假设上传线程将Inputstream关闭, ...

  6. CodeForces 567C. Geometric Progression(map 数学啊)

    题目链接:http://codeforces.com/problemset/problem/567/C C. Geometric Progression time limit per test 1 s ...

  7. 项目已经部署,tomcat已经启动,网址也没问题,却出现404错误

    这个有可能是tomcat在初始化资源的时候发生了异常...判断tomcat是否发生异常就是看tomcat启动日志里有没有报错就行了. 另一种原因就是可能是修改了项目名称.因为web名称实际上是没有跟着 ...

  8. ZOJ 3962 E.Seven Segment Display / The 14th Zhejiang Provincial Collegiate Programming Contest Sponsored by TuSimple E.数位dp

    Seven Segment Display Time Limit: 1 Second      Memory Limit: 65536 KB A seven segment display, or s ...

  9. how to create modals with Bootstrap

    In this tutorial you will learn how to create modals with Bootstrap. Creating Modals with Bootstrap ...

  10. Struts2逻辑视图与视图资源