珠宝 jewelry 省选模拟
n种珠宝。每种各1个。有价格ci元,美度vi。 要求分别输出1元到m元 可买的最大优美度。
整数 :0<n<=10000000, 0<ci<=300,0<=vi<=10^9, 0<m<=50000;
之前 系统的看过有关背包的题目。。然而这个做法还没见过。
首先复杂度是 300*m*log(m)+n
对1~300的每个价格 x, 按v从大到小排序,形成一个b数组。记录了价格为x的vi的前缀和(这里记为bj, b[j]=b[j-1]+vi(当然。若j*x>m时 不用再继续记录。)
因为固定了当前只取价格为x的珍宝,所以,设f[i]为i元能买的最大价值 f[i]只能由f[i-t*u](t为自然数)更新而来。。 而b数组是上凸壳(①b是不减的,②因为对相同的价格,按vi从大到小排序。所以b的斜率是不增的。)
那么就可以用栈来做了: 设a[]为上一种价格x'计算完后 的f[],然后用a[]和b[]来更新f[] ,那么f[i]=max(a[i-k*x]+b[i]), 换句话说,可以发现 每个a[i]可以在一段l~r上 作为max,且不会有另外的位置它会作max,同时i越大,对应的l,r也大。
可以设 i%x=u 那么枚举u=0~x-1, 然后O(m/x)的扫一遍——for(i=u;i<=m;i+=x) , 用栈求出 每个a[i] 的l~r, 然后更新f[]。
细节多*意识模糊=一个晚上的颓废。。。。 上代码
#include <cmath>
#include <cstdio>
#include <cctype>
#include <algorithm>
#define LL long long
using namespace std;
template<class T> inline void gn(T &x) {
char c; while(!isdigit(c=getchar())); x=c-'';
while(isdigit(c=getchar())) x=x*+c-'';
}
struct bla{
int c; LL v;
}o[];
int l,r,u,n,m,k,t,x,y,z,p,q,d[],e[];
LL b[],a[],f[];
inline bool cmp(bla a,bla b){if (a.c!=b.c) return a.c<b.c; return a.v>b.v;}
inline int get(int p,int q){
int L=(p-u)/x,R=(q-u)/x,l=R-,r=(m-u)/x,j;
while (l<r){
j=l+r+>>;
if(a[p]+b[j-L]>=a[q]+b[j-R]) l=j; else r=j-;
}
return u+l*x;
}
int main(){
freopen("jewelry.in","r",stdin);
freopen("jewelry.out","w",stdout);
gn(n); gn(m);
for (int i=;i<=n;++i) gn(o[i].c),gn(o[i].v);
sort(o+,o+n+,cmp);
for (int I=,J;I<=n;I=J){
x=o[I].c;
for (int i=;i<=k;++i) b[i]=; k=;
for (J=I;o[J].c==o[I].c;++J)
if (k*x+x<=m) b[++k]=b[k-]+o[J].v;
if (k*x>m) --k;
for (int i=;i<=m;++i) a[i]=f[i],f[i]=;
for (u=;u<x;++u){
t=;
for (int i=u;i<=m;i+=x){
while (t){
e[t]=get(d[t],i);
if (e[t]>e[t-]) break;
--t;
}
d[++t]=i;
}
e[t]=(m-u)/x*x+u;
for (int i=;i<=t;++i)
for (int j=e[i];j>e[i-];j-=x) f[j]=max(f[j],a[d[i]]+b[(j-d[i])/x]);
}
}
for (int i=;i<=m;++i){
f[i]=max(f[i],f[i-]);
printf("%I64d ",f[i]);
}
return ;
}
Sad
珠宝 jewelry 省选模拟的更多相关文章
- 【洛谷比赛】[LnOI2019]长脖子鹿省选模拟赛 T1 题解
今天是[LnOI2019]长脖子鹿省选模拟赛的时间,小编表示考的不怎么样,改了半天也只会改第一题,那也先呈上题解吧. T1:P5248 [LnOI2019SP]快速多项式变换(FPT) 一看这题就很手 ...
- 省选模拟赛第四轮 B——O(n^4)->O(n^3)->O(n^2)
一 稍微转化一下,就是找所有和原树差距不超过k的不同构树的个数 一个挺trick的想法是: 由于矩阵树定理的行列式的值是把邻接矩阵数值看做边权的图的所有生成树的边权乘积之和 那么如果把不存在于原树中的 ...
- NOI2019省选模拟赛 第五场
爆炸了QAQ 传送门 \(A\) \(Mas\)的童年 这题我怎么感觉好像做过--我记得那个时候还因为没有取\(min\)结果\(100\to 0\)-- 因为是个异或我们肯定得按位考虑贡献了 把\( ...
- NOI2019省选模拟赛 第六场
传送门 又炸了-- \(A\) 唐时月夜 不知道改了什么东西之后就\(A\)掉了\(.jpg\) 首先,题目保证"如果一片子水域曾经被操作过,那么在之后的施法中,这片子水域也一定会被操作&q ...
- 省选模拟赛 arg
1 arg (arg.cpp/in/out, 1s, 512MB)1.1 Description给出一个长度为 m 的序列 A, 请你求出有多少种 1...n 的排列, 满足 A 是它的一个 LIS. ...
- 【NOI省选模拟】小奇的花园
「题目背景」 小奇在家中的花园漫步时,总是会思考一些奇怪的问题. 「问题描述」 小奇的花园有n个温室,标号为1到n,温室以及以及温室间的双向道路形成一棵树. 每个温室都种植着一种花,随着季节的变换,温 ...
- [JZOJ6257] 【省选模拟8.9】修路
题目 题目大意 有一堆点,每个点都有其权值\(c_i\). 每次插入边\((u,v)\),\(u\)和\(1\)连通,\(v\)和\(1\)不连通.最后保证形成一棵树. 每次插入的时候询问\(1\)到 ...
- @省选模拟赛03/16 - T3@ 超级树
目录 @description@ @solution@ @accepted code@ @details@ @description@ 一棵 k-超级树(k-SuperTree) 可按如下方法得到:取 ...
- 5.10 省选模拟赛 拍卖 博弈 dp
LINK:拍卖 比赛的时候 前面时间浪费的有点多 写这道题的时候 没剩多少时间了. 随便设了一个状态 就开始做了. 果然需要认真的思考.其实 从我的状态的状态转移中可以看出所有的结论. 这里 就不再赘 ...
随机推荐
- Django 的信号 & Flask 的信号
信号:框架内部已帮助开发者预留的可扩展的位置 一.Django 的信号 项目目录结构: django_signal |--- app01 |--- models.py |--- views.py .. ...
- python之-- socket 基础篇
socket 网络模块 注意事项:在python3中,所有数据的传输必须用bytes类型(bytes只支持ascii码)所以在发送数据的时候要么在发送的字符串前面加 'b',要么使用encode('u ...
- POJ 1470 Closest Common Ancestors【LCA Tarjan】
题目链接: http://poj.org/problem?id=1470 题意: 给定若干有向边,构成有根数,给定若干查询,求每个查询的结点的LCA出现次数. 分析: 还是很裸的tarjan的LCA. ...
- hdu6110(线段树+lca)
题目 http://acm.hdu.edu.cn/showproblem.php?pid=6110 分析 注意到,若干条路径的交一定也是条路径 我们可以维护一个线段树,seg[l..r]存着第l条~第 ...
- Spring MVC的WebMvcConfigurerAdapter用法收集(零配置,无XML配置)
原理先不了解,只记录常用方法 用法: @EnableWebMvc 开启MVC配置,相当于 <?xml version="1.0" encoding="UTF-8&q ...
- Building clang on RedHat
http://btorpey.github.io/blog/2015/01/02/building-clang/ clang is a great compiler, with a boatload ...
- redis connetced refused remote
239down vote I've been stuck with the same issue, and the preceding answer did not help me (albeit w ...
- Guice 学习(八)AOP (面向切面的编程)
Guice的AOP还是非常弱的.眼下只支持方法级别上的,另外灵活性也不是非常高. 看例如以下演示样例: Guice支持AOP的条件是: 类必须是public或者package (default) 类不 ...
- ldd
ldd命令用于判断某个可执行的 binary 档案含有什么动态函式库 [diego@localhost ~/work/branch_dispatch_201511/rtqa_center/source ...
- JavaSE入门学习23:Java面向对象之构造方法
学了JavaSE面向对象这一部分,也该对构造方法做一个总结了. 一构造方法 在多数情况下,初始化一个对象的终于步骤是去调用这个对象的构造方法. 构造方法负责对象的初始化工作,为 实例变量赋予合适的初始 ...