POJ3169 差分约束 线性
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 12522 | Accepted: 6032 |
Description
Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.
Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.
Input
Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.
Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.
Output
Sample Input
4 2 1
1 3 10
2 4 20
2 3 3
Sample Output
27
Hint
There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.
The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.
Source
题意:
我认为题意英文正常的都可以看的懂吧。
就是奶牛排队,一个地方可以容纳许多奶牛,
奶牛有互相喜欢的和互相讨厌的,
先输入喜欢的,1号3号相互喜欢,距离不能超过10
2和4不能超过20,2,3不能小于3
对于喜欢输入A,B,C
就是说d[B]-d[A]<=C;
转化为,d[B]<=C+d[A];
求最多,用最短路,下面也需要化成形式一致的才可以。
不能忘了d[i]-d[i-1]>=0这个限制。
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<queue>
#define INF 2000000007
#define N 1007
#define M 10007
using namespace std; int n,l,r;
int dis[N],num[N],ins[N];
int cnt,head[N],next[M*],rea[M*],val[M*]; void add(int u,int v,int fee)
{
next[++cnt]=head[u];
head[u]=cnt;
rea[cnt]=v;
val[cnt]=fee;
}
bool Spfa()
{
for (int i=;i<=n;i++)
ins[i]=,dis[i]=INF,num[i]=;
queue<int>q;
q.push();dis[]=,num[]=;
while(!q.empty())
{
int u=q.front();q.pop();
for (int i=head[u];i!=-;i=next[i])
{
int v=rea[i],fee=val[i];
if (dis[v]>dis[u]+fee)
{
dis[v]=dis[u]+fee;
if (!ins[v])
{
num[v]++;
ins[v]=;
q.push(v);
if (num[v]>n) return false;
}
}
}
ins[u]=;
}
return true;
}
int main()
{
memset(head,-,sizeof(head));
scanf("%d%d%d",&n,&l,&r);
for (int i=,x,y,z;i<=l;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
}
for (int i=,x,y,z;i<=r;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(y,x,-z);
}
for (int i=;i<=n;i++)
add(i+,i,);
bool flag=Spfa();
if (!flag) printf("-1\n");
else
{
if (dis[n]==INF) printf("-2\n");
else printf("%d\n",dis[n]);
}
}
POJ3169 差分约束 线性的更多相关文章
- POJ 3169 Layout(差分约束 线性差分约束)
题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距 ...
- POJ3169(差分约束:转载)
转载自mengxiang000000传送门 Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10278 Ac ...
- POJ-3169 Layout (差分约束+SPFA)
POJ-3169 Layout:http://poj.org/problem?id=3169 参考:https://blog.csdn.net/islittlehappy/article/detail ...
- [USACO2005][POJ3169]Layout(差分约束)
题目:http://poj.org/problem?id=3169 题意:给你一组不等式了,求满足的最小解 分析: 裸裸的差分约束. 总结一下差分约束: 1.“求最大值”:写成"<=& ...
- poj3169 最短路(差分约束)
题意:一个农夫有n头牛,他希望将这些牛按照编号 1-n排成一条直线,允许有几头牛站在同一点,但是必须按照顺序,有一些牛关系比较好,希望站的距离不超过某个值,而有一些牛关系不太好,所以希望站的距离大于等 ...
- 【POJ3169 】Layout (认真的做差分约束)
Layout Description Like everyone else, cows like to stand close to their friends when queuing for ...
- 【poj3169】【差分约束+spfa】
题目链接http://poj.org/problem?id=3169 题目大意: 一些牛按序号排成一条直线. 有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没 ...
- POJ3169:Layout(差分约束)
Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 15705 Accepted: 7551 题目链接:http ...
- POJ 3159 Candies(差分约束+最短路)题解
题意:给a b c要求,b拿的比a拿的多但是不超过c,问你所有人最多差多少 思路:在最短路专题应该能看出来是差分约束,条件是b - a <= c,也就是满足b <= a + c,和spfa ...
随机推荐
- 利用Laravel 搭建oauth2 API接口 附 Unauthenticated 解决办法
利用Laravel 搭建oauth2 API接口 要求 laravel 5.4以上 安装 $ composer require laravel/passport 在配置文件 config/app.ph ...
- C# KeepAlive的设置
C# KeepAlive的相关设置 网上有很多相关KeepAlive的内容,终于找到了有关C#的这方面资料,设置了下,有行可靠! TcpListener myListener = new TcpLis ...
- @GetMapping和@PostMapping 和@RequestMapping区别
@GetMapping 用于将HTTP GET请求映射到特定处理程序方法的注释. 具体来说,@GetMapping是一个作为快捷方式的组合注释@RequestMapping(method = Requ ...
- hihocoder offer收割编程练习赛10 C 区间价值
思路: 令v[l, r](0<= l <= r < n)表示区间[l,r]的价值,则长度为n的区间的价值最少为0,最多为n*(n-1)/2.整体对价值二分,求能满足sum{v[l, ...
- 460在全志r16平台tinav3.0系统下使用i2c-tools
460在全志r16平台tinav3.0系统下使用i2c-tools 2018/9/6 19:05 版本:V1.0 开发板:SC3817R SDK:tina v3.0 1.01原始编译全志r16平台ti ...
- ESLint - 简介
ESLint是一个QA工具,用来避免低级错误和统一代码的风格. ESLint被设计为完全可配置的,主要有两种方式来配置ESLint: 在注释中配置:使用JavaScript注释直接把配置嵌入到JS文件 ...
- Android学习笔记(十一) Intent
一.Intent对象的基本概念 -Intent是Android应用程序组件之一 -Intent对象在Android系统当中表示一种意图 -Intent当中最重要的内容是action与data 二.In ...
- oracle 创建表
--创建表 create table browser_track( btId number not null , opend_id ) not null, url_address ) not null ...
- nginx访问php程序相关配置
server { listen *:80; charset utf-8; server_name roujiaxiaomowang.wanghaokun.com mowang.crucco.com; ...
- 迅为IMX6核心板开发平台智能交通解决方案
智能交通系统它是将先进的信息技术.数据通讯传输技术.电子传感技术.控制技术及计算机技术等有效地集成运用于整个地面交通管理系统而建立的一种在大范围内.全方位发挥作用的,实时.准确.高效的综合交通运输管理 ...