POJ3169 差分约束 线性
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 12522 | Accepted: 6032 |
Description
Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.
Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.
Input
Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.
Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.
Output
Sample Input
4 2 1
1 3 10
2 4 20
2 3 3
Sample Output
27
Hint
There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.
The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.
Source
题意:
我认为题意英文正常的都可以看的懂吧。
就是奶牛排队,一个地方可以容纳许多奶牛,
奶牛有互相喜欢的和互相讨厌的,
先输入喜欢的,1号3号相互喜欢,距离不能超过10
2和4不能超过20,2,3不能小于3
对于喜欢输入A,B,C
就是说d[B]-d[A]<=C;
转化为,d[B]<=C+d[A];
求最多,用最短路,下面也需要化成形式一致的才可以。
不能忘了d[i]-d[i-1]>=0这个限制。
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<queue>
#define INF 2000000007
#define N 1007
#define M 10007
using namespace std; int n,l,r;
int dis[N],num[N],ins[N];
int cnt,head[N],next[M*],rea[M*],val[M*]; void add(int u,int v,int fee)
{
next[++cnt]=head[u];
head[u]=cnt;
rea[cnt]=v;
val[cnt]=fee;
}
bool Spfa()
{
for (int i=;i<=n;i++)
ins[i]=,dis[i]=INF,num[i]=;
queue<int>q;
q.push();dis[]=,num[]=;
while(!q.empty())
{
int u=q.front();q.pop();
for (int i=head[u];i!=-;i=next[i])
{
int v=rea[i],fee=val[i];
if (dis[v]>dis[u]+fee)
{
dis[v]=dis[u]+fee;
if (!ins[v])
{
num[v]++;
ins[v]=;
q.push(v);
if (num[v]>n) return false;
}
}
}
ins[u]=;
}
return true;
}
int main()
{
memset(head,-,sizeof(head));
scanf("%d%d%d",&n,&l,&r);
for (int i=,x,y,z;i<=l;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
}
for (int i=,x,y,z;i<=r;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(y,x,-z);
}
for (int i=;i<=n;i++)
add(i+,i,);
bool flag=Spfa();
if (!flag) printf("-1\n");
else
{
if (dis[n]==INF) printf("-2\n");
else printf("%d\n",dis[n]);
}
}
POJ3169 差分约束 线性的更多相关文章
- POJ 3169 Layout(差分约束 线性差分约束)
题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距 ...
- POJ3169(差分约束:转载)
转载自mengxiang000000传送门 Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10278 Ac ...
- POJ-3169 Layout (差分约束+SPFA)
POJ-3169 Layout:http://poj.org/problem?id=3169 参考:https://blog.csdn.net/islittlehappy/article/detail ...
- [USACO2005][POJ3169]Layout(差分约束)
题目:http://poj.org/problem?id=3169 题意:给你一组不等式了,求满足的最小解 分析: 裸裸的差分约束. 总结一下差分约束: 1.“求最大值”:写成"<=& ...
- poj3169 最短路(差分约束)
题意:一个农夫有n头牛,他希望将这些牛按照编号 1-n排成一条直线,允许有几头牛站在同一点,但是必须按照顺序,有一些牛关系比较好,希望站的距离不超过某个值,而有一些牛关系不太好,所以希望站的距离大于等 ...
- 【POJ3169 】Layout (认真的做差分约束)
Layout Description Like everyone else, cows like to stand close to their friends when queuing for ...
- 【poj3169】【差分约束+spfa】
题目链接http://poj.org/problem?id=3169 题目大意: 一些牛按序号排成一条直线. 有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没 ...
- POJ3169:Layout(差分约束)
Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 15705 Accepted: 7551 题目链接:http ...
- POJ 3159 Candies(差分约束+最短路)题解
题意:给a b c要求,b拿的比a拿的多但是不超过c,问你所有人最多差多少 思路:在最短路专题应该能看出来是差分约束,条件是b - a <= c,也就是满足b <= a + c,和spfa ...
随机推荐
- matlab实现算术编解码 分类: 图像处理 2014-06-01 23:01 357人阅读 评论(0) 收藏
利用Matlab实现算术编解码过程,程序如下: clc,clear all; symbol=['abc']; pr=[0.4 0.4 0.2]; %各字符出现的概率 temp=[0.0 0.4 0.8 ...
- Android开发学习--RecycleView入门
该控件用于在有限的窗口中展示大量数据集,其实这样功能的控件我们并不陌生,例如:ListView.GridView 通过设置它提供的不同LayoutManager,ItemDecoration , It ...
- AJPFX学习笔记JavaAPI之String类
学习笔记JavaAPI之String类 [size=10.5000pt]一.所属包java.lang.String,没有子类.特点:一旦被初始化就不可以被改变. 创建类对象的两种方式: String ...
- SQLite busy handler
SQLite doesn't support high concurrency. In case of a lot of concurrent access from multi-process or ...
- vue2.0 v-model指令
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- xamarin 学习笔记01-环境配置
1.安装AndroidSDK 参考 2.安装NDK NDK下载地址:http://dl.google.com/android/ndk/android-ndk-r10e-windows-x86_64.e ...
- PHP正则表达式考察点
正则表达式的作用 分隔.查找.匹配.替换字符串 正则表达式的组成部分 分隔符 "/" . "#" . "~" 通用原子 \d : 十进制的0 ...
- 安装gitlab并配置邮箱
安装要求:运行内存必须大于等于2G 一.安装docker wget -qO- https://get.docker.com/ | sh 镜像加速: echo '{"registry-mirr ...
- C++运行外部exe并判断exe返回值
有三个API函数可以运行可执行文件WinExec.ShellExecute和CreateProcess.CreateProcess因为使用复杂,比较少用. WinExec主要运行EXE文件. ⑴ 函数 ...
- BZOJ 3595: [Scoi2014]方伯伯的Oj Splay + 动态裂点 + 卡常
Description 方伯伯正在做他的Oj.现在他在处理Oj上的用户排名问题. Oj上注册了n个用户,编号为1-”,一开始他们按照编号排名.方伯伯会按照心情对这些用户做以下四种操作,修改用户的排名和 ...