LSA、LDA
Latent semantic analysis (LSA) is a technique in natural language processing, in particular distributional semantics, of analyzing relationships between a set of documents and the terms they contain by producing a set of concepts related to the documents and terms. LSA assumes that words that are close in meaning will occur in similar pieces of text (the distributional hypothesis). A matrix containing word counts per paragraph (rows represent unique words and columns represent each paragraph) is constructed from a large piece of text and a mathematical technique called singular value decomposition (SVD) is used to reduce the number of rows while preserving the similarity structure among columns. Words are then compared by taking the cosine of the angle between the two vectors (or the dot product between the normalizations of the two vectors) formed by any two rows. Values close to 1 represent very similar words while values close to 0 represent very dissimilar words.
Occurrence matrix:
LSA can use a term-document matrix which describes the occurrences of terms in documents; it is a sparse matrix whose rows correspond to terms and whose columns correspond to documents. A typical example of the weighting of the elements of the matrix is tf-idf (term frequency–inverse document frequency): the weight of an element of the matrix is proportional to the number of times the terms appear in each document, where rare terms are upweighted to reflect their relative importance.
Rank lowering(矩阵降维):
After the construction of the occurrence matrix, LSA finds a low-rank approximation to the term-document matrix. There could be various reasons for these approximations:
- The original term-document matrix is presumed too large for the computing resources; in this case, the approximated low rank matrix is interpreted as an approximation (a "least and necessary evil").
- The original term-document matrix is presumed noisy: for example, anecdotal instances of terms are to be eliminated. From this point of view, the approximated matrix is interpreted as a de-noisified matrix(a better matrix than the original).
- The original term-document matrix is presumed overly sparse relative to the "true" term-document matrix. That is, the original matrix lists only the words actually in each document, whereas we might be interested in all words related to each document—generally a much larger set due to synonymy.
Derivation
Let $X$ be a matrix where element $ (i,j)$ describes the occurrence of term $ i $ in document $j$ (this can be, for example, the frequency). $X$ will look like this:

Now a row in this matrix will be a vector corresponding to a term, giving its relation to each document:

Likewise, a column in this matrix will be a vector corresponding to a document, giving its relation to each term:

Now, from the theory of linear algebra, there exists a decomposition of $X$ such that $U$ and $ V $ are orthogonal matrices(正交矩阵) and $\Sigma$ is a diagonal matrix(对角矩阵). This is called a singular value decomposition (SVD):


The values
are called the singular values, and
and
the left and right singular vectors. Notice the only part of
that contributes to 
is the
row. Let this row vector be called
. Likewise, the only part of
that contributes to
is the
column,
. These are not theeigenvectors,but depend on all the eigenvectors.
https://en.wikipedia.org/wiki/Latent_semantic_analysis
LSA、LDA的更多相关文章
- 京东商品评论的分类预测与LSA、LDA建模
(一)数据准备 1.爬取京东自营店kindle阅读器的评价数据,对数据进行预处理,使用机器学习算法对评价文本进行舆情分析,预测某用户对本商品的评价是好评还是差评.通过数据分析与模型分析,推测出不同型号 ...
- 文本情感分析(一):基于词袋模型(VSM、LSA、n-gram)的文本表示
现在自然语言处理用深度学习做的比较多,我还没试过用传统的监督学习方法做分类器,比如SVM.Xgboost.随机森林,来训练模型.因此,用Kaggle上经典的电影评论情感分析题,来学习如何用传统机器学习 ...
- 四大机器学习降维算法:PCA、LDA、LLE、Laplacian Eigenmaps
四大机器学习降维算法:PCA.LDA.LLE.Laplacian Eigenmaps 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映 ...
- 特征向量、特征值以及降维方法(PCA、SVD、LDA)
一.特征向量/特征值 Av = λv 如果把矩阵看作是一个运动,运动的方向叫做特征向量,运动的速度叫做特征值.对于上式,v为A矩阵的特征向量,λ为A矩阵的特征值. 假设:v不是A的速度(方向) 结果如 ...
- 我是这样一步步理解--主题模型(Topic Model)、LDA
1. LDA模型是什么 LDA可以分为以下5个步骤: 一个函数:gamma函数. 四个分布:二项分布.多项分布.beta分布.Dirichlet分布. 一个概念和一个理念:共轭先验和贝叶斯框架. 两个 ...
- 一口气讲完 LSA — PlSA —LDA在自然语言处理中的使用
自然语言处理之LSA LSA(Latent Semantic Analysis), 潜在语义分析.试图利用文档中隐藏的潜在的概念来进行文档分析与检索,能够达到比直接的关键词匹配获得更好的效果. LSA ...
- 【转】四大机器学习降维算法:PCA、LDA、LLE、Laplacian Eigenmaps
最近在找降维的解决方案中,发现了下面的思路,后面可以按照这思路进行尝试下: 链接:http://www.36dsj.com/archives/26723 引言 机器学习领域中所谓的降维就是指采用某种映 ...
- 降维算法整理--- PCA、KPCA、LDA、MDS、LLE 等
转自github: https://github.com/heucoder/dimensionality_reduction_alo_codes 网上关于各种降维算法的资料参差不齐,同时大部分不提供源 ...
- Word Embedding/RNN/LSTM
Word Embedding Word Embedding是一种词的向量表示,比如,对于这样的"A B A C B F G"的一个序列,也许我们最后能得到:A对应的向量为[0.1 ...
随机推荐
- 关于Linux上的SSH服务无法启动,提示“/var/empty/sshd must be owned by root and not group or world-writable”错误
首先通过物理终端进入到linux上,手工检查ssh发现没运行# /etc/init.d/sshd statussshd is stopped 手动启动服务,发现报告权限错误.# /etc/init.d ...
- python-小数据池,再谈编码,is和 == 的区别
一 . 小数据池 # 小数据池针对的是: int, str, bool 在py文件中几乎所有的字符串都会缓存. # id() 查看变量的内存地址 s = 'attila' print(id(s)) 二 ...
- Python从文件中读取数据(2)
一.读取文件中各行的内容并存储到一个列表中 继续用resource.txt 举例 resource.txt my name is joker, I am 18 years old, How about ...
- Beyond Compare 30天评估期结束解决办法
打开Beyond Compare 4,提示已经超出30天试用期限制 解决方法: 1.修改文件 修改C:\Program Files\Beyond Compare 4\BCUnrar.dll ,这个文件 ...
- Android自动化测试Uiautomator--UiDevice接口简介
Uiautomator主要分为UiDevice, UiObject, UiScrollable, UiSelector, UiCollection几个类. getUiDevice()方法可以得到一个U ...
- 算法学习记录-图——最小路径之Floyd算法
floyd算法: 解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包. 设为从到的只以集合中的节点为中间节点的最短路径的长度. 若最短路径经过 ...
- Thymeleaf模板引擎+Spring整合使用方式的介绍
尊重原创,原文地址为:https://www.cnblogs.com/jiangchao226/p/5937458.html 前言 这个教程介绍了Thymeleaf与Spring框架的集成,特别是Sp ...
- 【LeetCode】Available Captures for Rook(车的可用捕获量)
这道题是LeetCode里的第999道题. 题目叙述: 在一个 8 x 8 的棋盘上,有一个白色车(rook).也可能有空方块,白色的象(bishop)和黑色的卒(pawn).它们分别以字符 &quo ...
- POJ-3261 Milk Patterns,后缀数组+二分。。
Milk Patterns 题意:求可重叠的至少重复出现k次的最长的字串长. 这题的做法和上一题 ...
- Android自制rom,为update.zip签名
确认已经安装好openssl openssl genrsa -out key.pem openssl req -new -key key.pem -out request.pem openssl x5 ...