题目描述

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。

每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。

因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。

例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。

输入输出格式

输入格式:

输入文件fruit.in包括两行,第一行是一个整数n(1<=n<=10000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。

输出格式:

输出文件fruit.out包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^31。

输入输出样例

输入样例#1:

3
1 2 9
输出样例#1:

15

说明

对于30%的数据,保证有n<=1000:

对于50%的数据,保证有n<=5000;

对于全部的数据,保证有n<=10000。

题解

用反证法得出先合并最小是最优的,用堆维护一下权值就行,其实下面的代码在基础书上就有了

/*
Author: ksq
Algorithm: Heap
*/
#include <stdio.h>
#include <string.h>
using namespace std;
int heap[10010], heap_size;
void swap(int &x, int &y)
{
x^=y, y^=x, x^=y;
}
void put(int d)
{
int now, next;
heap[++heap_size] = d;
now = heap_size;
while(now > 1)
{
next = now >> 1;
if(heap[now] >= heap[next]) return;
swap(heap[now], heap[next]);
now = next;
}
}
int get()
{
int res = heap[1], now, next;
heap[1] = heap[heap_size--];
now = 1;
while(now * 2 <= heap_size)
{
next = now << 1;
if(next < heap_size && heap[next] > heap[next|1]) next|=1;
if(heap[next] >= heap[now]) break;
swap(heap[next], heap[now]);
now = next;
}
return res;
}
int n;
int main()
{
scanf("%d", &n);
for(int i = 1; i <= n; ++i)
{
int x;
scanf("%d", &x);
put(x);
}
int ans = 0, x, y;
for(int i = 1; i < n; ++i)
{
x = get();
y = get();
ans += x + y;
put(x + y);
}
printf("%d\n", ans);
return 0;
}

  

[Noip2004][Day ?][T?]合并果子(?.cpp)的更多相关文章

  1. 洛谷P6033 [NOIP2004 提高组] 合并果子 加强版 (单调队列)

    数据加强了,原来nlogn的复杂度就不行了...... 首先对原来的n个数排序(注意不能用快排),因为值域是1e5,所以可以开桶排序,开两个队列,一个存原来的n个数(已经满足单增),另一队列存两两合并 ...

  2. 代码源 每日一题 分割 洛谷 P6033合并果子

    ​ 题目链接:切割 - 题目 - Daimayuan Online Judge 数据加强版链接: [NOIP2004 提高组] 合并果子 加强版 - 洛谷 题目描述 有一个长度为 ∑ai 的木板,需要 ...

  3. 合并果子(NOIP2004)

    合并果子(NOIP2004)[问题描述]在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆.每一次合并,多多可以把两堆果子合并到一起,消耗的体 ...

  4. NC16663 [NOIP2004]合并果子

    NC16663 [NOIP2004]合并果子 题目 题目描述 ​ 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. ​ 每一次合并,多多可 ...

  5. NOIP2004合并果子

    题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...

  6. [luoguP1090][Noip2004]合并果子

                                            合并果子 首先来看一下题目: (OI2004合并果子) [题目描述] 果园里,多多已经将所有的果子打了下来,而且按果子的 ...

  7. [NOIP2004] 提高组 洛谷P1090 合并果子

    题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...

  8. 加强版:合并果子[NOIP2004]

    题目 链接:https://ac.nowcoder.com/acm/contest/26887/1001 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 131072K, ...

  9. 合并果子 (codevs 1063) 题解

    [问题描述] 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和 ...

随机推荐

  1. 用CSS绘制三角形

    其实用HTML CSS绘制三角行 是非常简单的 ,我在网上看了不少人写的博客,里面写的好复杂样子,反正我是看的云里雾里的,说实话是挺简单的. 首先提出一段代码: <!DOCTYPE html&g ...

  2. 【Tsinsen】A1280. 最长双回文串

    Bryce1010模板 http://www.tsinsen.com/A1280### 题目分析:记录一个点向后和向前的最长回文串,然后就是max(Llen[i]+Rlen[i+1])了. #incl ...

  3. 数学 2015百度之星初赛2 HDOJ 5255 魔法因子

    题目传送门 /* 数学:不会写,学习一下这种解题方式:) 思路:设符合条件的数的最高位是h,最低位是l,中间不变的部分为mid,由题意可得到下面的公式(这里对X乘上1e6用a表示,b表示1e6) (h ...

  4. 那些坑爹的python面试题

    python基础知识思维导图 MyProcessOn Python基础: 说说你眼中的python( 2 ) 谈谈你对python和其他语言的区别 1. python 中,变量是以内容为基准而不是像 ...

  5. 题解报告:hihoCoder #1050 : 树中的最长路

    描述 上回说到,小Ho得到了一棵二叉树玩具,这个玩具是由小球和木棍连接起来的,而在拆拼它的过程中,小Ho发现他不仅仅可以拼凑成一棵二叉树!还可以拼凑成一棵多叉树——好吧,其实就是更为平常的树而已. 但 ...

  6. python正则表达式多次提取数据(一个规则提取多组数据)

    import re ttt='"FileName":"陈雪凝 - <em>绿色<\/em>","AlbumID":& ...

  7. C/C++程序计时函数gettimeofday的使用

    linux 环境下 用 clock_t发现不准. 换用 //头文件 #include <sys/time.h> //使用timeval start, end;   gettimeofday ...

  8. shell expect

    关键的action spawn     调用要执行的命令expect     捕捉用户输入的提示 send        发送需要交互的值,替代了用户手动输入内容set           设置变量值 ...

  9. Python实现决策树C4.5算法

    为什么要改进成C4.5算法 原理 C4.5算法是在ID3算法上的一种改进,它与ID3算法最大的区别就是特征选择上有所不同,一个是基于信息增益比,一个是基于信息增益. 之所以这样做是因为信息增益倾向于选 ...

  10. H+后台主题UI框架---整理(三)

    这里面介绍下H+后台主题UI框架里面插件的应用,不过都是最最简单最初级的功能.主要有日历插件,input单选多选(icheck)插件,input下拉搜索(chosen)插件. 一.日历插件 有如下几种 ...