分成四块进行计算,这是显而易见的。(雾)

然后考虑计算$\sum_{i=1}^n|sum_{j=1}^m gcd(i,j)=k$

首先可以把n,m/=k,就变成统计&i<=n,j<=m gcd(i,j)==1 &

如果我们用卷积进行计算。gcd不好展开,我们套一个e

$\sum_{i=1}^n|sum_{j=1}^m e(gcd(i,j))$

$=\sum_{i=1}^n|sum_{j=1}^m \sum_{d \mid i,d \mid j}/mu(d) $

$=\sum_{d \mid n} \mu(d) * \lfloor n/d \rfloor * \lfloor m/d \rfloor$

然后下界函数分块即可。

然后试着莫比乌斯反演

令 F(d)表示 d|gcd(i,j) 的个数 f(d)表示 gcd(i,j)=d的个数

然后发现gcd是类似后缀和的一类东西,所以

$F(d)=\sum_{d \mid n} f(n)$

然后反演就可以得到

$f(d)=\sum_{d \mid n} F(d)*\mu( \lfloor n/d \rfloor )$

然后发现$F(d)=\lfloor n/d \rfloor * \lfloor m/d \rfloor$

喜闻乐见下界函数分块即可

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define maxn 100005 int mu[maxn],pr[maxn],top=0,vis[maxn],sum[maxn]; void init()
{
mu[1]=sum[1]=1;
F(i,2,maxn-1)
{
if (!vis[i]) mu[i]=-1,pr[++top]=i,vis[i]=1;
F(j,1,top)
{
if (i*pr[j]>=maxn) break;
vis[i*pr[j]]=1;
if (i%pr[j]==0) {mu[i*pr[j]]=0;break;}
mu[i*pr[j]]=-mu[i];
}
sum[i]=sum[i-1]+mu[i];
}
} int t,a,b,c,d,k; ll cal(int n,int m,int k)
{
ll ret=0;n/=k;m/=k;if (n>m) swap(n,m);
if (n==0) return 0;
for (int i=1,last=0;i<=n;i=last+1)
{
last=min(n/(n/i),m/(m/i));
ret+=((ll)sum[last]-(ll)sum[i-1])*(n/i)*(m/i);
}
return ret;
} int main()
{
init();
scanf("%d",&t);
while (t--)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("%lld\n",cal(b,d,k)-cal(a-1,d,k)-cal(b,c-1,k)+cal(a-1,c-1,k));
}
}

  

BZOJ 2301 [HAOI2011]Problem b ——莫比乌斯反演的更多相关文章

  1. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  2. BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1007  Solved: 415[Submit][ ...

  3. BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)

    [Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...

  4. bzoj 2301: [HAOI2011]Problem b mobius反演 RE

    http://www.lydsy.com/JudgeOnline/problem.php?id=2301 设f(i)为在区间[1, n]和区间[1, m]中,gcd(x, y) = i的个数. 设F( ...

  5. BZOJ 2301 [HAOI2011]Problem b (分块 + 莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 6519  Solved: 3026[Submit] ...

  6. BZOJ 2301: [HAOI2011]Problem b (莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 436  Solved: 187[Submit][S ...

  7. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  8. bzoj 2301: [HAOI2011]Problem b

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Submit: 3757 Solved: 1671 [Submit] ...

  9. BZOJ 2301: [HAOI2011]Problem b( 数论 )

    和POI某道题是一样的...  http://www.cnblogs.com/JSZX11556/p/4686674.html 只需要二维差分一下就行了. 时间复杂度O(MAXN + N^1.5) - ...

随机推荐

  1. Java 语言中一个字符占几个字节?

    Java中理论说是一个字符(汉字 字母)占用两个字节. 但是在UTF-8的时候 new String("字").getBytes().length 返回的是3 表示3个字节 作者: ...

  2. IOS生成UUID

    /** * 生成GUID */ + (NSString *)generateUuidString{ // create a new UUID which you own CFUUIDRef uuid ...

  3. 10个优秀的移动Web应用开发框架

    在最近几年里,移动互联网高速发展.市场潜力巨大.继计算机.互联网之后,移动互联网正掀起第三次信息技术革命的浪潮,新技术.新应用不断涌现.今天这篇文章向大家推荐10大优秀的移动Web开发框架,帮助开发者 ...

  4. Servlet The Request

    The Request HTTP Protocol Parameters 所有的HTTP Protocol Parameters都会放在一个Map中, 可以通过getParameterMap得到. 对 ...

  5. HDOJ 4509 湫湫系列故事——减肥记II(2013腾讯编程马拉松) 并查集合并区间

    发现这种合并区间的题目还可以这么玩 给你n段时间 然后问没被占用的时间是多少 题目所给的区间是右开的导致我wa 好多人5e5*1440的暴力跑出来的时间居然只是我的两倍 不懂.... 所以并查集并没有 ...

  6. feature map计算大小公式

    http://blog.csdn.net/cheese_pop/article/details/51955915 将整个分成两部分,左边部分,右边部分.右边部分每次其实都是移动stride这么大,左边 ...

  7. (2)JSTL的fmt国际化标签库

    format标签库:做国际化格式化,分两类 : 国际化核心标签:<fmt:setLocale>.<fmt:bundle>.<fmt:setBundle>.<f ...

  8. MYSQL - 限制资源的使用

    MYSQL - 限制资源的使用 1.MAX_QUERIES_PER_HOUR 用来限制用户每小时运行的查询数量 mysql> grant select on *.* to 'cu_blog'@' ...

  9. 121. Best Time to Buy and Sell Stock@python

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

  10. C\C++对于字符串输入处理

    1.scanf scanf以%s格式符读入字符串,会以空格为结束,也就是无法将空格读入.如果换成%c就可以读入,但是无法一次性读入一整行字符. 2.fgets 显然,fgets是一个读取带空格字符串的 ...