Spoj-TRNGL Make Triangle
Make Triangle
Chayanika loves Mathematics. She is learning a new chapter geometry. While reading the chapter a question came in her mind. Given a convex polygon of n sides. In how many ways she can break it into triangles, by cutting it with (n-3) non-adjacent diagonals and the diagonals do not intersect.
Input
First line of the input will be an integer t (1<=t<=100000) which is the no of test cases. Each test case contains a single integer n (3<=n<=1000) which is the size of the polygon.
Output
For each test case output the no of ways %100007.
Example
Input:
2
3
5 Output:
1
5 很迷……答案显然就是卡特兰数
然后在计算的时候出现了一些小小的偏差
c[i]=c[i-1]*(4i-2)/(i+1)的递推式是不行的,因为特么取模的1e5+7不是质数,i+1的逆元怎么搞啊……
然后用n^2的c[k]*c[i-k]的递推了
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<deque>
#include<set>
#include<map>
#include<ctime>
#define LL long long
#define inf 0x7ffffff
#define pa pair<int,int>
#define mkp(a,b) make_pair(a,b)
#define pi 3.1415926535897932384626433832795028841971
#define mod 100007
using namespace std;
inline LL read()
{
LL x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
LL catlan[];
int main()
{
catlan[]=catlan[]=;
for (int i=;i<=;i++)
for (int j=;j<i;j++)
catlan[i]=(catlan[i]+catlan[j]*catlan[i-j])%mod;
int T=read();
while (T--)printf("%lld\n",catlan[read()-]);
}
Spoj TRNGL
Spoj-TRNGL Make Triangle的更多相关文章
- SPOJ #453. Sums in a Triangle (tutorial)
It is a small fun problem to solve. Since only a max sum is required (no need to print path), we can ...
- UVALive 4639 && SPOJ SPOINTS && POJ 3805 && AOJ 1298 Separate Points 求两个凸包是否相交 难度:3
https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...
- BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]
2588: Spoj 10628. Count on a tree Time Limit: 12 Sec Memory Limit: 128 MBSubmit: 5217 Solved: 1233 ...
- [LeetCode] Triangle 三角形
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...
- [LeetCode] Pascal's Triangle II 杨辉三角之二
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3, ...
- [LeetCode] Pascal's Triangle 杨辉三角
Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,Retur ...
- 【leetcode】Pascal's Triangle II
题目简述: Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3, Retur ...
- 【leetcode】Pascal's Triangle
题目简述: Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5 ...
- SPOJ DQUERY D-query(主席树)
题目 Source http://www.spoj.com/problems/DQUERY/en/ Description Given a sequence of n numbers a1, a2, ...
随机推荐
- 覆盖alert对话框-自制Jquery.alert插件
Javascript 代码: (function ($) { 'use strict'; window.alert = $.alert = function (msg) { var defaultOp ...
- decompressedResponseImageOfSize:completionHandler:]_block_invoke
原因: It turns out the linker error was caused by the CGImageSourceCreateWithData call. And the root ...
- (五)VMware Harbor 部署之SSL
转自:https://www.cnblogs.com/Rcsec/p/8479728.html 1 .签名证书与自签名证书 签名证书:由权威颁发机构颁发给服务器或者个人用于证明自己身份的东西. 自签名 ...
- 一个典型的flex布局,兼容性比较好
html 代码: <body class="flex-wrap col-flex"> <header class="midCenter flex-wra ...
- C++基础:虚函数、重载、覆盖、隐藏<转>
转自:http://www.2cto.com/kf/201404/291772.html 虚函数总是跟多态联系在一起,引入虚函数可以使用基类指针对继承类对象进行操作! 虚函数:继承接口(函数名,参数, ...
- caffe修改需要的东西 6:40
https://blog.csdn.net/zhaishengfu/article/details/51971768?locationNum=3&fps=1
- java面试基础篇(三)
1.Q:ArrayList 和 LinkedList 有什么区别? A:ArrayList查询快!LinkedList增删快.ArrayList是基于索引的数据接口,它的底层是数组.空间占用相对小一些 ...
- Oracle 回顾
Oracle 函数 日期函数: 1.sysdate--查询当前日期 select sysdate from dual; --查询当前日期 2.months_between--返回两个日期之间的月份差 ...
- javase(4)_数组
一.数组概述 数组可以看成是多个相同类型数据组合,对这些数据的统一管理. 数组变量属于引用类型,数组也可以看成对象,数组中的每个元素相当于该对象的成员变量. 数组中的元素可以是任意类型,包括基本类型和 ...
- 【JavaScript】两种常见JS面向对象写法
基于构造函数 function Circle(r) { this.r = r; } Circle.PI = 3.14159; Circle.prototype.area = function() { ...