Link of the Paper: https://arxiv.org/pdf/1412.6632.pdf

Main Points:

  1. The authors propose a multimodal Recurrent Neural Networks ( AlexNet/VGGNet + a multimodal layer + RNNs ). Their work has two major differences from these methods. Firstly, they incorporate a two-layer word embedding system in the m-RNN network structure which learns the word representation more efficiently than the single-layer word embedding. Secondly, they do not use the recurrent layer to store the visual information. The image representation is inputted to the m-RNN model along with every word in the sentence description.
  2. Most of the sentence-image multimodal models use pre-computed word embedding vectors as the initialization of their models. In contrast, the authors randomly initialize their word embedding layers and learn them from the training data.
  3. The m-RNN model is trained using a log-likelihood cost function. The errors can be backpropagated to the three parts ( the vision part, the language part, and the  ) of the m-RNN model to update the model parameters simultaneously.
  4. The hyperparameters, such as layer dimensions and the choice of the non-linear activation functions, are tuned via cross-validation on Flickr8K dataset and are then fixed across all the experiments.

Other Key Points:

  1. Applications for Image Captioning: early childhood education, image retrieval, and navigation for the blind.
  2. There are generally three categories of methods for generating novel sentence descriptions for images. The first category assumes a specific rule of the language grammer. They parse the sentence and divide it into several parts. This kind of method generates sentences that are syntactically correct. The second category retrieves similar captioned images, and generates new descriptions by generalizing and re-composing the retrieved captions. The third category of methods, which is more related to our method, learns a probability density over the space of multimodal inputs, using for example, Deep Boltzmann Machines, and topic models. They generate sentences with richer and more flexible structure than the first group. The probability of generating sentences using the model can serve as the affinity metric for retrieval.
  3. Many previous methods treat the task of describing images as a retrieval task and formulate the problem as a ranking or embedding learning problem. They first extract the word and sentence features ( e.g. Socher et al.(2014) uses dependency tree Recursive Neural Network to extract sentence features ) as well as the image features. Then they optimize a ranking cost to learn an embedding model that maps both the sentence feature and the image feature to a common semantic feature space ( the same semantic space ). In this way, they can directly calculate the distance between images and sentences. These methods genarate image captions by retrieving them from a sentence database. Thus, they lack the ability of generating novel sentences or describing images that contain novel combinations of objects and scenes.
  4. Benchmark datasets for Image Captioning: IAPR TC-12 ( Grubinger et al.(2006) ), Flickr8K ( Rashtchian et al.(2010) ), Flickr30K ( Young et al.(2014) ) and MS COCO ( Lin et al.(2014) ).
  5. Evaluation Metrics for Sentence Generation: Sentence perplexity and BLUE scores.
  6. Tasks related to Image Captioning: Generating Novel Sentences, Retrieving Images Given a Sentence, Retrieving Sentences Given an Image.
  7. The m-RNN model is trained using Baidu's internal deep learning platform PADDLE.

Paper Reading - Deep Captioning with Multimodal Recurrent Neural Networks ( m-RNN ) ( ICLR 2015 ) ★的更多相关文章

  1. Paper Reading - Sequence to Sequence Learning with Neural Networks ( NIPS 2014 )

    Link of the Paper: https://arxiv.org/pdf/1409.3215.pdf Main Points: Encoder-Decoder Model: Input seq ...

  2. 递归神经网络(Recurrent Neural Networks,RNN)

    在深度学习领域,传统的多层感知机(MLP)具有出色的表现,取得了许多成功,它曾在许多不同的任务上——包括手写数字识别和目标分类上创造了记录.甚至到了今天,MLP在解决分类任务上始终都比其他方法要略胜一 ...

  3. Paper Reading - Deep Visual-Semantic Alignments for Generating Image Descriptions ( CVPR 2015 )

    Link of the Paper: https://arxiv.org/abs/1412.2306 Main Points: An Alignment Model: Convolutional Ne ...

  4. Paper Reading - Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation ( CVPR 2015 )

    Link of the Paper: https://ieeexplore.ieee.org/document/7298856/ A Correlative Paper: Learning a Rec ...

  5. Hyperspectral Image Classification Using Similarity Measurements-Based Deep Recurrent Neural Networks

    用RNN来做像素分类,输入是一系列相近的像素,长度人为指定为l,相近是利用像素相似度或是范围相似度得到的,计算个欧氏距离或是SAM. 数据是两个高光谱数据 1.Pavia University,Ref ...

  6. Attention and Augmented Recurrent Neural Networks

    Attention and Augmented Recurrent Neural Networks CHRIS OLAHGoogle Brain SHAN CARTERGoogle Brain Sep ...

  7. The Unreasonable Effectiveness of Recurrent Neural Networks (RNN)

    http://karpathy.github.io/2015/05/21/rnn-effectiveness/ There’s something magical about Recurrent Ne ...

  8. 课程五(Sequence Models),第一 周(Recurrent Neural Networks) —— 1.Programming assignments:Building a recurrent neural network - step by step

    Building your Recurrent Neural Network - Step by Step Welcome to Course 5's first assignment! In thi ...

  9. (zhuan) Attention in Long Short-Term Memory Recurrent Neural Networks

    Attention in Long Short-Term Memory Recurrent Neural Networks by Jason Brownlee on June 30, 2017 in  ...

随机推荐

  1. ArrayList两个对象之间的赋值

    List<String> list1 = new ArrayList<String>(); List<String> list2 = new ArrayList&l ...

  2. pl/sql下载

    详解Oracle客户端工具:PL/SQL工具下载: 下载地址:http://www.oraclejsq.com/article/010100114.html

  3. ORACLE逐行累计求和方法(OVER函数)

    1.RANK ( ) OVER ( [QUERY_PARTITION_CLAUSE] ORDER_BY_CLAUSE ) DENSE_RANK ( ) OVER ( [QUERY_PARTITION_ ...

  4. 混乱的 Java 日志体系

    混乱的 Java 日志体系 2016/09/10 | 分类: 基础技术 | 0 条评论 | 标签: LOG 分享到: 原文出处: xirong 一.困扰的疑惑 目前的日志框架有 jdk 自带的 log ...

  5. CentOS7 更换OpenStack-queens源

    根据官网的安装文档来对OpenStack搭建时碰到一个问题,安装完centos-release-openstack-queens后相当于是增加了一个OpenStack的源,但是因为这个源是在国外安装一 ...

  6. 日期插件rolldate.js的使用

    日期插件rolldate.js的使用 下载地址:http://www.jq22.com/jquery-info19834 效果: 代码: <!DOCTYPE html> <html ...

  7. ssm多数据源的操作

    公司要求,需要使用两个数据库,一个mysql,一个oracle.所以需要配置两个数据库来进行操作. 1.首先,需要在jdbc.properties文件中将两个库的配置数据写入,不过一个写driver, ...

  8. Redis事件

    Redis事件 Redis的ae(Redis用的事件模型库) ae.c Redis服务器是一个事件驱动程序,服务器需要处理以下两类事件: 文件事件(file event):Redis服务器通过套接字与 ...

  9. hadoop 提交程序并监控运行

    程序编写及打包 使用maven导入第三方jar pom.xml <?xml version="1.0" encoding="UTF-8"?> < ...

  10. 解决Stm32出现error: #20: identifier "GPIO_InitTypeDef" is undefined异常

    该错误是我在移植sd卡程序时出现的,错误如下: error:#20,查看错误,可以发现,这些变量都是系统定义过的,没有修改过.并且该变量也能成功跳转被找到.那么到底是什么原因呢?逛了一些帖子,尝试了好 ...