TOYS
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 10666   Accepted: 5128

Description

Calculate the number of toys that land in each bin of a partitioned toy box. 

Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the
toys get mixed up, and it is impossible for John to find his favorite toys. 



John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example
toy box. 

 

For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner
and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that
the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is
random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.

Output

The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the
rightmost bin). Separate the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2

Hint

As the example illustrates, toys that fall on the boundary of the box are "in" the box.
题意:给出一个长方形槽,然后从左到右给出n个隔板,把该长方形槽分成n+1个空间,n个隔板互不交叉,最后给出m个小球,随机给出,保证每个小球不在外部和隔板上;问每个空间有多少个小球?(如果不是按照顺序给出的,按照x排序即可,因为互补交叉)
分析;因为隔板是按照顺序给出的,那么对于每个小球二分隔板,用叉乘判断点在线段的位置,枚举答案即可:
#include"string.h"
#include"stdio.h"
#include"iostream"
#include"algorithm"
#include"queue"
#include"stack"
#define M 5009
#define N 100009
#include"stdlib.h"
#include"math.h"
#define inf 10000000000000000LL
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define eps 1e-10
using namespace std;
struct node
{
double x,y;
node(){}
node(double _x,double _y):x(_x),y(_y){}
node operator +(node p)
{
return node(x+p.x,y+p.y);
}
node operator -(node p)
{
return node(x-p.x,y-p.y);
}
double operator *(node p)
{
return x*p.y-y*p.x;
}
double operator ^(node p)
{
return x*p.x+y*p.y;
}
}p[M],k[M];
int n;
int cmp(node a,node b)
{
return a.x<b.x;
}
double len(node a)
{
return sqrt(a^a);
}
double dis(node a,node b)
{
return len(b-a);
}
double cross(node a,node b,node c)
{
return (b-a)*(c-a);
}
double dot(node a,node b,node c)
{
return (b-a)^(c-a);
}
int fun(node p,node *q)
{
double rad=0;
for(int i=1;i<=4;i++)
{
rad+=acos(dot(p,q[i-1],q[i%4])/dis(p,q[i-1])/dis(p,q[i%4]));
}
if(fabs(rad-PI*2)<eps)
return 1;
else
return 0;
}
int s[M],vis[M];
int main()
{
double x1,x2,y1,y2;
int n,m,i,kk=0;
while(scanf("%d",&n),n)
{
scanf("%d%lf%lf%lf%lf",&m,&x1,&y1,&x2,&y2);
k[n+1]=node(x2,x2);
for(i=1;i<=n;i++)
scanf("%lf%lf",&k[i].x,&k[i].y);
memset(s,0,sizeof(s));
for(i=1;i<=m;i++)
{
scanf("%lf%lf",&p[i].x,&p[i].y);
int l=1,r=n+1,mid;
int fuck;
while(l<=r)
{
mid=(l+r)/2;
node p1(k[mid].y,y2);
node p2(k[mid].x,y1);
if(cross(p1,p2,p[i])>0)
{
fuck=mid;
r=mid-1;
}
else
{
l=mid+1;
} }
s[fuck-1]++;
}
if(kk)
printf("\n");
kk++;
for(i=0;i<=n;i++)
printf("%d: %d\n",i,s[i]);
}
}

几何+点与线段的位置关系+二分(POJ2318)的更多相关文章

  1. 简单几何(点与线段的位置) POJ 2318 TOYS && POJ 2398 Toy Storage

    题目传送门 题意:POJ 2318 有一个长方形,用线段划分若干区域,给若干个点,问每个区域点的分布情况 分析:点和线段的位置判断可以用叉积判断.给的线段是排好序的,但是点是无序的,所以可以用二分优化 ...

  2. Segments---poj3304(判断直线与线段的位置关系)

    题目链接:http://poj.org/problem?id=3304 题意:给你n个线段,求是否有一条直线与所有的线段都相交,有Yes,没有No; 枚举所有的顶点作为直线的两点,然后判断这条直线是否 ...

  3. POJ-2318 TOYS 计算几何 判断点在线段的位置

    题目链接:https://cn.vjudge.net/problem/POJ-2318 题意 在一个矩形内,给出n-1条线段,把矩形分成n快四边形 问某些点在那个四边形内 思路 二分+判断点与位置关系 ...

  4. 平面内,线与线 两条线找交点 两条线段的位置关系(相交)判定与交点求解 C#

    个人亲自编写.测试,可以正常使用   道理看原文,这里不多说   网上找到的几篇基本都不能用的   C#代码 bool Equal(float f1, float f2) { return (Math ...

  5. Cupid's Arrow---hdu1756(判断点与多边形的位置关系 模板)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1756 题意:中文题,套模板即可: /* 射线法:判断一个点是在多边形内部,边上还是在外部,时间复杂度为 ...

  6. LightOj1190 - Sleepwalking(判断点与多边形的位置关系--射线法模板)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1190 题意:给你一个多边形含有n个点:然后又m个查询,每次判断点(x, y)是否在多边 ...

  7. 【bzoj2402】陶陶的难题II 分数规划+树链剖分+线段树+STL-vector+凸包+二分

    题目描述 输入 第一行包含一个正整数N,表示树中结点的个数.第二行包含N个正实数,第i个数表示xi (1<=xi<=10^5).第三行包含N个正实数,第i个数表示yi (1<=yi& ...

  8. TOYS(计算几何基础+点与直线的位置关系)

    题目链接:http://poj.org/problem?id=2318 题面: TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submiss ...

  9. 叉积_判断点与三角形的位置关系 P1355 神秘大三角

    题目描述 判断一个点与已知三角形的位置关系. 输入输出格式 输入格式: 前三行:每行一个坐标,表示该三角形的三个顶点 第四行:一个点的坐标,试判断该点与前三个点围成三角形的位置关系 (详见样例) 所有 ...

随机推荐

  1. 传说中的纯CSS圆角代码

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xht ...

  2. DataGridView基本操作

    1.获得某个(指定的)单元格的值:dataGridView1.Row[i].Cells[j].Value;2.获得选中的总行数:dataGridView1.SelectedRows.Count;3.获 ...

  3. C++11 新特性:Lambda 表达式

    参考文章:https://blogs.oracle.com/pcarlini/entry/c_1x_tidbits_lambda_expressions 或许,Lambda 表达式算得上是 C++ 1 ...

  4. perl 中的哈希赋值

    在perl 中,通过代码动态的给哈希赋值,是最常见的应用场景,但是有些情况下,我们事先知道一些信息,当需要把这些信息存放进一个哈希的时候,直接给哈希赋值就好: 哈希的key不用说,就是一个字符串,关键 ...

  5. ThinkPHP Mongo驱动update方法支持upsert参数

    Mongo数据库update操作有一个相对于Mysql的关键特性,它可以使用upsert模式,当更新的数据不存在时,直接插入,但是ThinkPHP的Mongo驱动居然不支持这一特性,没办法,自力更生了 ...

  6. 最新版ChemDraw 15.1 免费获取下载

    ChemDraw 15.1 Pro是最新版的ChemOffice套件的个人生产力工具,它可以帮助科学家有效地捕捉和分享工作内容,通过可视化功能对结果获得更深入的了解.现在为大家带来好消息,ChemOf ...

  7. JavaScript------生成Guid方法

    转载: http://blog.csdn.net/limm33/article/details/51536529 代码: function newGuid() { var guid = "& ...

  8. Swift学习笔记之--类和对象

    通过在 class后接类名称来创建一个类.在类里边声明属性与声明常量或者变量的方法是相同的,唯一的区别的它们在类环境下.同样的,方法和函数的声明也是相同的写法 class Shape { func s ...

  9. ionic跳转(一)

    在ionic中可以用两个办法写中转链接(写模版地址或路由地址) 1)a 标签的 href <a class="button button-icon icon ion-android-h ...

  10. js里面函数的内部属性

    1.arguments用來存放传输参数的集合,可以被调用多次,每次数組都不一样,增强了函数的强壮性 实例: function calc() { var sum = 0; /*参数为一个时候*/ if ...