TFIDF练习
直接上代码吧:
"""
测试Demo
"""
import lightgbm as lgb
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import CountVectorizer def use_lgb():
# 训练数据,500个样本,10个维度
train_data = np.random.rand(500, 10)
# 构建二分类数据
label = np.random.randint(2, size=500)
# 放入到dataset中
train = lgb.Dataset(train_data, label=label)
print(train) def use_tfidf():
sentence = ['没有 你 的 地方 都是 他乡', '没有 你 的 旅行 都是 流浪']
# 不去掉停用词
c = CountVectorizer(stop_words=None) # 拟合模型返回文本矩阵
count_word_tf = c.fit_transform(sentence) # print(count_word_tf.toarray())
# # 查看那些词,以字典的形式
# print(c.vocabulary_)
# # 得到特征
# print(c.get_feature_names()) ###############################
stopword = ['都是']
# 构建一个tfidf向量器,去除停用词
tfidf = TfidfVectorizer(stop_words=stopword) # 给出tfidf的权重,将tfidf矩阵抽取出来
weight = tfidf.fit_transform(sentence).toarray()
# 给出特征名称
word = tfidf.get_feature_names() print("有哪些词:")
print(word) print("\n词汇表以及他们的位置索引:")
for key, value in tfidf.vocabulary_.items():
print(key, value) print("\n词频矩阵:")
print(weight)
print(len(weight)) # 打印每类文本中的tfidf权重,第一个for变量所有样本,第二个for遍历某一类文档下的所有权重
for i in range(len(weight)):
print("这里输出的是第{}文本的词语tfidf权重".format(i))
for j in range(len(word)):
# 经过tfidf后,找出每篇文档相关的词,这些词就是精心挑选出来的。然后根据这些词到文档中去找到tfidf值
print(word[j], weight[i][j]) if __name__ == '__main__':
use_tfidf()
输出:
有哪些词:
['他乡', '地方', '旅行', '没有', '流浪'] 词汇表以及他们的位置索引:
他乡 0
旅行 2
流浪 4
地方 1
没有 3 词频矩阵:
[[0.6316672 0.6316672 0. 0.44943642 0. ]
[0. 0. 0.6316672 0.44943642 0.6316672 ]]
2
这里输出的是第0文本的词语tfidf权重
他乡 0.6316672017376245
地方 0.6316672017376245
旅行 0.0
没有 0.4494364165239821
流浪 0.0
这里输出的是第1文本的词语tfidf权重
他乡 0.0
地方 0.0
旅行 0.6316672017376245
没有 0.4494364165239821
流浪 0.6316672017376245
本文参考:https://blog.csdn.net/the_lastest/article/details/79093407
TFIDF练习的更多相关文章
- TF-IDF算法学习报告
TF-IDF是一种统计方法,这个算法在我们项目提取关键词的模块需要被用到,TF-IDF算法是用来估计 一个词汇对于一个文件集中一份文件的重要程度.从算法的定义中就可以看到,这个算法的有效实现是依靠 一 ...
- tf-idf知多少?
1.最完整的解释 TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度.字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反 ...
- TF-IDF提取行业关键词
1. TF-IDF简介 TF-IDF(Term Frequency/Inverse Document Frequency)是信息检索领域非常重要的搜索词重要性度量:用以衡量一个关键词\(w\)对于查询 ...
- Lucene TF-IDF 相关性算分公式(转)
Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序 TF:词频,IDF:逆向文档频率,TF-IDF是一种统计方法,或者被称为向量空间模型,名字听起来很 ...
- TF-IDF
TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索与文本挖掘的常用加权技术.TF-IDF是一种统计方法,用以评估一字词对于一个文件集或 ...
- TF-IDF 加权及其应用
TF-IDF 加权及其应用 TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索的常用加权技术.TF-IDF是一种统计方法,用以评估某个 ...
- TF-IDF算法
转自:http://www.cnblogs.com/eyeszjwang/articles/2330094.html TF-IDF(term frequency–inverse document fr ...
- TF-IDF 文本相似度分析
前阵子做了一些IT opreation analysis的research,从产线上取了一些J2EE server运行状态的数据(CPU,Menory...),打算通过训练JVM的数据来建立分类模型, ...
- 基于TF-IDF值的汉语语义消歧算法
RT,学校课题需要233,没了 话说,窝直接做个链接的集合好了,方便以后查找 特征值提取之 -- TF-IDF值的简单介绍 汉语语义消歧之 -- 句子相似度 汉语语义消歧之 -- 词义消歧简介 c++ ...
- Mahout源码分析之 -- 文档向量化TF-IDF
fesh个人实践,欢迎经验交流!Blog地址:http://www.cnblogs.com/fesh/p/3775429.html Mahout之SparseVectorsFromSequenceFi ...
随机推荐
- Floyd算法思想
关键词:代数.图论.矩阵.松弛技术.动态规划 Floyd算法是一个经典的动态规划算法.用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径.从动态规划的角度看问题,我们需要为这个目标重新 ...
- C#委托和事件定义和使用
委托 定义委托的语法和定义方法比较相似,只是比方法多了一个关键字delegate ,我们都知道方法就是将类型参数化,所谓的类型参数化就是说该方法接受一个参数,而该参数是某种类型的参数,比如int.st ...
- mysql的引擎myisam和innodb的区别
1. MYISAM和INNODB的不同?答:主要有以下几点区别: a)构造上的区别 MyISAM在磁盘上存储成三个文件,其中.frm文件存储表定义:.MYD (MYData)为数据文件:. ...
- [extjs] extjs 5.1 API 开发 文档
官方博客发布了这个新版本说明,英文文章请戳下面 http://www.sencha.com/blog/announcing-sencha-ext-js-5.1/ 翻译版本请戳下面: http://ex ...
- 工作流JBPM_day02:3-预定义的活动1_4-预定义的活动2+在图片上高亮显示正在执行的上活动
工作流JBPM_day02:3-预定义的活动1 工作流JBPM_day02:4-预定义的活动2+在图片上高亮显示正在执行的上活动 活动 Activity 预先定义好的活动 Start开始活动 End结 ...
- Python 入门(六)Dict和Set类型
什么是dict 我们已经知道,list 和 tuple 可以用来表示顺序集合,例如,班里同学的名字: ['Adam', 'Lisa', 'Bart'] 或者考试的成绩列表: [95, 85, 59] ...
- 未配置jdk环境变量,cmd环境能运行java -version命令
我的情况是C:\Windows\System32路径下有java.exe.javaw.exe.javaws.exe三个文件,将三个文件删除后配置自己的jdk环境变量 可能原因参考帖子:https:// ...
- phpstrom配置
- COM组件技术名称解释
GUID:全局唯一标识. CLSID 或 ProgID :唯一地表示一个组件服务程序,那么根据这些ID,就可以加载运行组件,并为客户端程序提供服务了. IID :唯一的表示接口ID. COM 组件是运 ...
- .Net内存溢出 System.OutOfMemoryException
内存溢出常见的情况和处理方式: http://outofmemory.cn/c/dotNet-outOfMemoryException MSDN中关于processModel的文档 https://m ...