http://poj.org/problem?id=3133

考虑插头 dp

用四进制表示一个插头的状态,0 表示没有插头,2 表示这个插头是连接两个 2 的,3 同理

然后就是大力分类讨论了

这题还是比较友善的一题,思路相对来说简单很多

我写的括号序列的方法状态是满的,数组必须开到 $ 3 ^ 9 $ 才能过

#include <cstdio>
#include <cstring>
#include <algorithm>
#define CIOS ios::sync_with_stdio(false);
#define rep(i, a, b) for(register int i = a; i <= b; i++)
#define per(i, a, b) for(register int i = a; i >= b; i--)
#define DEBUG(x) cerr << "DEBUG" << x << " >>> ";
using namespace std; typedef unsigned long long ull;
typedef long long ll; template <typename T>
inline void read(T &f) {
f = 0; T fu = 1; char c = getchar();
while(c < '0' || c > '9') { if(c == '-') fu = -1; c = getchar(); }
while(c >= '0' && c <= '9') { f = (f << 3) + (f << 1) + (c & 15); c = getchar(); }
f *= fu;
} template <typename T>
void print(T x) {
if(x < 0) putchar('-'), x = -x;
if(x < 10) putchar(x + 48);
else print(x / 10), putchar(x % 10 + 48);
} template <typename T>
void print(T x, char t) {
print(x); putchar(t);
} const int mod = 19687, N = mod + 50, INF = 0x7fffffff; int a[15][15], bin[15], f[2][N], v[2][N], head[N], tot[2], nxt[N], n, m, now; // 状态只有 0, 2, 3, 表示没有插头, 2 插头和 3 插头 void ins(int zt, int val) {
int u = zt % mod;
for(register int i = head[u]; i; i = nxt[i])
if(v[now][i] == zt) {
f[now][i] = min(f[now][i], val);
return;
}
nxt[++tot[now]] = head[u]; head[u] = tot[now];
v[now][tot[now]] = zt; f[now][tot[now]] = val;
} void sol() {
tot[now] = 1; f[now][1] = v[now][1] = 0;
for(register int i = 1; i <= n; i++) {
for(register int i = 1; i <= tot[now]; i++) v[now][i] <<= 2;
for(register int j = 1; j <= m; j++) {
now ^= 1; memset(head, 0, sizeof(head)); tot[now] = 0;
for(register int k = 1; k <= tot[now ^ 1]; k++) {
int zt = v[now ^ 1][k], val = f[now ^ 1][k];
int left = (zt >> ((j << 1) - 2)) & 3, up = (zt >> (j << 1)) & 3;
int right = (j == m) ? 1 : a[i][j + 1], down = (i == n) ? 1 : a[i + 1][j];
if(a[i][j] == 1) {
if(!left && !up) ins(zt, val);
} else if(!left && !up) {
if(!a[i][j]) {
ins(zt, val);
if(right + down == 5 || right == 1 || down == 1) continue;
if(right == 2 || down == 2) {
// 当两边有 2 插头时, 向下和向右摆 2 插头
ins(zt ^ (bin[j - 1] << 1) ^ (bin[j] << 1), val + 1);
} else if(right == 3 || down == 3) {
ins(zt ^ (bin[j - 1] * 3) ^ (bin[j] * 3), val + 1);
} else {
ins(zt ^ (bin[j - 1] << 1) ^ (bin[j] << 1), val + 1);
ins(zt ^ (bin[j - 1] * 3) ^ (bin[j] * 3), val + 1);
}
} else {
// 当前位置是一个 2 或 3
if(a[i][j] + right != 5 && right != 1) {
ins(zt ^ (bin[j] * a[i][j]), val + 1);
}
if(a[i][j] + down != 5 && down != 1) {
ins(zt ^ (bin[j - 1] * a[i][j]), val + 1);
}
}
} else if(left && up) {
if(left + up == 5 || a[i][j]) continue;
ins(zt ^ (bin[j - 1] * left) ^ (bin[j] * up), val + 1);
} else if(left && !up) {
if(a[i][j] == 0) {
if(right == 0 || right == left) ins(zt ^ (bin[j - 1] * left) ^ (bin[j] * left), val + 1);
if(down == 0 || down == left) ins(zt, val + 1);
} else if(a[i][j] == left) {
ins(zt ^ (bin[j - 1] * left), val + 1);
}
} else if(!left && up) {
if(a[i][j] == 0) {
if(right == 0 || right == up) ins(zt, val + 1);
if(down == 0 || down == up) ins(zt ^ (bin[j] * up) ^ (bin[j - 1] * up), val + 1);
} else if(a[i][j] == up) {
ins(zt ^ (bin[j] * up), val + 1);
}
}
}
}
}
} int main() {
bin[0] = 1; for(register int i = 1; i <= 11; i++) bin[i] = bin[i - 1] << 2;
while(scanf("%d %d", &n, &m) == 2 && n && m) {
memset(a, 0, sizeof(a)); memset(head, 0, sizeof(head)); memset(tot, 0, sizeof(tot));
for(register int i = 1; i <= n; i++) {
for(register int j = 1; j <= m; j++) read(a[i][j]);
}
sol(); int ans = INF;
for(register int i = 1; i <= tot[now]; i++) ans = min(ans, f[now][i]);
if(ans == INF) ans = 2; print(ans - 2, '\n');
}
return 0;
}

poj 3133 Manhattan Wiring的更多相关文章

  1. POJ 3133 Manhattan Wiring (插头DP,轮廓线,经典)

    题意:给一个n*m的矩阵,每个格子中有1个数,可能是0或2或3,出现2的格子数为2个,出现3的格子数为2个,要求将两个2相连,两个3相连,求不交叉的最短路(起终点只算0.5长,其他算1). 思路: 这 ...

  2. 【POJ】3133 Manhattan Wiring

    http://poj.org/problem?id=3133 题意:n×m的网格,有2个2,2个3,他们不会重合.还有障碍1.现在求2到2的路径和3到3的路径互不相交的最短长度-2.(2<=n, ...

  3. poj3133 Manhattan Wiring

    Manhattan Wiring Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 2016   Accepted: 1162 ...

  4. [LA3620]Manhattan Wiring

    [LA3620]Manhattan Wiring 试题描述 输入 输出 输入示例 输出示例 数据规模及约定 见“输入” 题解 我们把“连线”的过程改为“铺地砖”的过程,总共有 11 种地砖,每种地砖上 ...

  5. 【poj3133】 Manhattan Wiring

    http://poj.org/problem?id=3133 (题目链接) 题意 $n*m$的网格里有空格和障碍,还有两个$2$和两个$3$.要求把这两个$2$和两个$3$各用一条折线连起来.障碍里不 ...

  6. poj 1806 Manhattan 2025

    点击打开链接 题目大意就是给定一个最大歩数,让你输出你在三维的空间中可以到达的位置的切片,注意当歩数大于9的时候就不需要输出了! #include<stdio.h> #include< ...

  7. uva1214 Manhattan Wiring 插头DP

    There is a rectangular area containing n × m cells. Two cells are marked with “2”, and another two w ...

  8. [Poj3133]Manhattan Wiring (插头DP)

    Description 题目大意:给你个N x M(1≤N, M≤9)的矩阵,0表示空地,1表示墙壁,2和3表示两对关键点.现在要求在两对关键点之间建立两条路径,其中两条路径不可相交或者自交(就是重复 ...

  9. caioj1496: [视频]基于连通性状态压缩的 动态规划问题:Manhattan Wiring

    %%%%orz苏大佬 虽然苏大佬的baff吸不得,苏大佬的梦信不得,但是膜苏大佬是少不得的囧 这题还是比较有收获的 哼居然有我不会做的插头DP 自己yy了下,2表示属于2的插头,3表示3的插头 假如当 ...

随机推荐

  1. 15 并发编程-(IO模型)

    一.IO模型介绍 1.阻塞与非阻塞指的是程序的两种运行状态 阻塞:遇到IO就发生阻塞,程序一旦遇到阻塞操作就会停在原地,并且立刻释放CPU资源 非阻塞(就绪态或运行态):没有遇到IO操作,或者通过某种 ...

  2. oracle ROW_NUMBER用法

    Oracle中row_number().rank().dense_rank() 的区别 row_number的用途非常广泛,排序最好用它,它会为查询出来的每一行记录生成一个序号,依次排序且不会重复 使 ...

  3. FullBg-网页图片背景自适应大小

      网页背景自适应大小jQuery插件 fullBG.js http://cbavota.bitbucket.org/fullbg/ HTML <img id="background& ...

  4. FME2010 案例分析: 动态批量转换

    Link: http://blog.163.com/antufme@126/blog/static/140492492201022545726452/?suggestedreading&wum ...

  5. EL的基本使用

    总结:EL操作的是作用域 <body> <% Users users = new Users("lisi","lisi123","l ...

  6. Python运维开发基础02-语法基础

    上节作业回顾(讲解+温习60分钟) #!/bin/bash #user login User="yunjisuan" Passwd="666666" User2 ...

  7. WSAStartup function

    [WSAStartup function] Parameters wVersionRequested [in] The highest version of Windows Sockets speci ...

  8. spring集成mybatis配置多个数据源,通过aop自动切换

    spring集成mybatis,配置多个数据源并自动切换. spring-mybatis.xml如下: <?xml version="1.0" encoding=" ...

  9. Python3 abs() 函数

    Python3 abs() 函数  Python3 数字 描述 abs() 函数返回数字的绝对值. 语法 以下是 abs() 方法的语法: abs( x ) 参数 x -- 数值表达式,可以是整数,浮 ...

  10. PLSQL优化基础和性能优化 (学习总结)

    PLSQL优化基础和性能优化 (学习总结) 网上有一篇关于PLSQL优化的文章,不错,个人根据自己的经验再稍加整理和归纳,总结PLSQL优化和性能调优 适合有一定PLSQL基础,需要进一步提高的学友看 ...