解题:POI 2007 Weights
这是个$O(nlog^2$ $n)$的解法,因为蒟蒻博主没有看懂$O(nlog$ $n)$的更优秀的解法
显然从小到大装砝码是最优的方法,又显然从大到小装容器不会使得答案变劣,还显然砝码数具有单调性。于是就很好做了,先将砝码从小到大排序,每次二分答案后用一个大根堆维护容器然后按题意模拟即可
// luogu-judger-enable-o2
#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
int ves[N],wei[N];
int n,m,l,r,ans;
bool check(int x)
{
priority_queue<int> hp;
for(int i=;i<=n;i++) hp.push(ves[i]);
for(int i=x;i;i--)
{
if(hp.empty()) return false;
int tmp=hp.top(); hp.pop();
if(tmp>=wei[i]) hp.push(tmp-wei[i]);
else return false;
}
return true;
}
int main()
{
scanf("%d%d",&n,&m),l=,r=m;
for(int i=;i<=n;i++) scanf("%d",&ves[i]);
for(int i=;i<=m;i++) scanf("%d",&wei[i]);
sort(wei+,wei++m);
while(l<=r)
{
int mid=(l+r)/;
if(check(mid)) l=mid+,ans=mid;
else r=mid-;
}
printf("%d",ans);
return ;
}
解题:POI 2007 Weights的更多相关文章
- 解题:POI 2007 Tourist Attractions
题面 事实上这份代码在洛谷过不去,因为好像要用到一些压缩空间的技巧,我并不想(hui)写(捂脸) 先预处理$1$到$k+1$这些点之间相互的最短路和它们到终点的最短路,并记录下每个点能够转移到时的状态 ...
- 解题:POI 2007 Driving Exam
题面 有点意思的题 从一个位置$i$出发可以到达每一个位置即是从$1,n$出发可以到达$i$.然后有了一个做法:把图上下反转后建反图,这样就可以求从一个点$i$到达左右两侧的花费$dp[i][0/1] ...
- [POI 2007]ZAP-Queries
Description Byteasar the Cryptographer works on breaking the code of BSA (Byteotian Security Agency) ...
- 解题:SCOI 2007 蜥蜴
题面 拆点跑最大流 所有能跑出去的点连向汇点,容量为inf 原点连向所有初始有蜥蜴的点,容量为1 每根柱子拆成两个点“入口”和“出口”,入口向出口连容量为高度的边,出口向别的有高度的柱子的入口连容量为 ...
- [POI 2007] 办公楼
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1098 [算法] 显然 , 答案为补图的连通分量个数 用链表优化BFS , 时间复杂度 ...
- [POI 2007] Zap
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1101 [算法] 首先 , 问题可以转化为求GCD(x,y) = 1,x <= ...
- BZOJ 1101 Luogu P3455 POI 2007 Zap (莫比乌斯反演+数论分块)
手动博客搬家: 本文发表于20171216 13:34:20, 原地址https://blog.csdn.net/suncongbo/article/details/78819470 URL: (Lu ...
- [POI 2007] 堆积木
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1109 [算法] DP [代码] #include<bits/stdc++.h& ...
- 【POI 2007】 山峰和山谷
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1102 [算法] 广度优先搜索 [代码] #include<bits/stdc+ ...
随机推荐
- axios封装(一)基础配置
axios 是目前流行的Promise网络请求库,在浏览器端他通过 xhr方式创建ajax请求.在node环境下,通过 http 库创建网络请求. axios 提供了丰富的配置,这里讲一讲我在工作中通 ...
- “错误: 编码GBK的不可映射字符” 的解决方案
命令行下,用javac命令编译java程序时,如果文档的编码为“utf-8”,并且含有中文字符时,会出现乱码现象,编译通过不了.如图: 解决方案:编译时指定编码方式,防止乱码.如下:
- JavaScript学习笔记(二)——函数和数组
第二章 函数简介 1 第一个函数示例 <script language="JavaScript" type="text/JavaScript"> f ...
- Tree - XGBoost with parameter description
In the previous post, we talk about a very popular Boosting algorithm - Gradient Boosting Decision T ...
- 性能度量RMSE
回归问题的典型性能度量是均方根误差(RMSE:Root Mean Square Error).如下公式. m为是你计算RMSE的数据集中instance的数量. x(i)是第i个实例的特征值向量 ,y ...
- Adobe InDesign CS6自学入门到高级视频教程
关键字:Adobe InDesign 视频教程 点击获取视频教程 教程目录 第1章/1.卸载InDesign CS6.avi 第1章/2.安装InDesign CS6.avi 第2章/1.创建并编辑自 ...
- 微信小程序---scroll-view在苹果手机上触底或触顶页面闪动问题
在项目开发中遇到一个关于scroll-view的的问题,具体如下: 项目要求是横向滚动,由于直接在scroll-view组件设置display:flex不生效,因此考虑直接在scroll-view下增 ...
- 4. 基本socket函数
一.创建socket /* 创建一个socket */ int socket(int family, int type, int protocol); /* 参数说明 */ // domain:使用哪 ...
- 【Alpha】阶段第四次Scrum Meeting
[Alpha]阶段第四次Scrum Meeting 工作情况 团队成员 今日已完成任务 明日待完成任务 刘峻辰 获取课程评论接口 增加课程接口 赵智源 整合前端进行部署 整合前端进行部署 肖萌威 编写 ...
- linux awk,sort,uniq,wc,cut命令详解
1.awk awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息 $ 表示当前行 $ 表示第一列 NF 表示一共有多少列 $NF 表示最 ...