菜菜的喵喵题~

  化序列为矩阵!化腐朽为神奇!左上角为1,往右每次*3,往下每次*2,这样子就把问题转化成了在矩阵里选不相邻的数有几种可能。

  举个矩阵的例子

  1 3 9 27
  2 6 18 54
  4 12 36 108

  这样最多11列,最多17行,那么方案数就可以用状压了。 

  但是我们会发现,矩阵里没有5,所以我们要把5作为左上角再算一次答案,最后把所有矩阵的答案用乘法原理乘起来就好

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define MOD(x) ((x)>=mod?(x)-mod:(x))
using namespace std;
const int maxn=,mod=1e9+;
int n,ans,cnth;
int f[][<<],cntl[];
bool v[maxn];
inline void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
inline int find(int x)
{
cnth=;memset(cntl,,sizeof(cntl));
for(int i=,fir=x;fir<=n;i++,fir*=,cnth++)
for(int j=,sec=fir;sec<=n;j++,sec*=,cntl[i]++)v[sec]=;
f[][]=;
for(int i=;i<=cnth;i++)for(int j=;j<=(<<cntl[])-;j++)f[i][j]=;
for(int i=;i<=cnth;i++)
for(int j=;j<(<<cntl[i]);j++)
if(!(j&(j>>)))
for(int k=;k<(<<cntl[i-]);k++)
if(!(k&(k>>)))if(!(j&k))f[i][j]=MOD(f[i][j]+f[i-][k]);
int sum=;
for(int i=;i<=(<<cntl[cnth])-;i++)sum=MOD(sum+f[cnth][i]);
return sum;
}
int main()
{
read(n);ans=;
for(int i=;i<=n;i++)
if(!v[i])ans=1ll*ans*find(i)%mod;
printf("%d\n",ans);
}

bzoj2734:[HNOI2012]集合选数(状压DP)的更多相关文章

  1. [HNOI2012]集合选数 --- 状压DP

    [HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...

  2. 【BZOJ-2734】集合选数 状压DP (思路题)

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1070  Solved: 623[Submit][Statu ...

  3. bzoj 2734: [HNOI2012]集合选数 状压DP

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status ...

  4. BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...

  5. 洛谷$P3226\ [HNOI2012]$集合选数 状压$dp$

    正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ ...

  6. $HNOI2012\ $ 集合选数 状压$dp$

    \(Des\) 求对于正整数\(n\leq 1e5\),{\(1,2,3,...,n\)}的满足约束条件:"若\(x\)在该子集中,则\(2x\)和\(3x\)不在该子集中."的子 ...

  7. bzoj 2734 [HNOI2012]集合选数 状压DP+预处理

    这道题很神啊…… 神爆了…… 思路大家应该看别的博客已经知道了,但大部分用的插头DP.我加了预处理,没用插头DP,一行一行来,速度还挺快. #include <cstdio> #inclu ...

  8. 【BZOJ-2732】集合选数 状压DP (思路题)

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1070  Solved: 623[Submit][Statu ...

  9. BZOJ2734 HNOI2012集合选数(状压dp)

    完全想不到的第一步是构造一个矩阵,使得每行构成公比为3的等比数列,每列构成公比为2的等比数列.显然矩阵左上角的数决定了这个矩阵,只要其取遍所有既不被2也不被3整除的数那么所得矩阵的并就是所有的数了,并 ...

  10. [BZOJ2734][HNOI2012] 集合选数(状态压缩+思维)

    Description 题目链接 Solution 可以根据条件构造出一个矩阵, 1 3 9 27 81... 2 6 18.... 4 12 36... 这个矩阵满足\(G[i][1]=G[i-1] ...

随机推荐

  1. 【转】在Android Studio中下载Android SDK的两种方式(Android Studio3.0、windows)

    在Android Studio中下载Android SDK的两种方式(Android Studio3.0.windows) 方式一.设置HTTP Proxy1. 打开Settings2. 点击HTTP ...

  2. 【转】glumer Appium + Python环境搭建(移动端自动化)

    最近整理了一下自动化的东西,好久没搭建环境又踩了不少坑,appium的环境搭建比较繁琐,好多同行估计都在环境上被卡死了.分享一下~~ 一.安装JDK,配置JDK环境    百度搜索下载就行,这里分享一 ...

  3. katalon系列十二:自动化上传文件、下载文件

    一.下载文件1.下载文件时,需要先设置好Chrome/Firefox下载路径.不弹出下载框等,大家先学习下在selenium下如何设置:https://www.cnblogs.com/fnng/p/7 ...

  4. Ubuntu 安装python后,安装python-dev

    1.通常情况下: sudo apt install python-dev 或者 在 sudo apt install python 命令下安装应该也附带了 python-dev 上述 pyhthon ...

  5. windows中使用mysql配置my.ini时的坑

    windows中安装mysql的一般步骤: mysql版本:5.7.16 1.解压 2.把解压的文件夹bin目录地址添加到环境变量PATH里面 3.在文件加中添加配置文件my.ini——配置内容后面说 ...

  6. Spring学习(2):面向接口编程思想

    一. 引言 Spring核心的IOC的实体用了面向接口编程思想,所以有必要了解下.简单来说的话,Spring就是一个轻量级的控制反转(IOC)和面向切面(AOP)的容器框架. 接口的定义的概念:泛指实 ...

  7. 点滴拾遗 - 自定义 Format 控制 String.Format 行为

    点击下载示例代码 String.Format 一重载方法的签名如下 public static string Format( IFormatProvider provider, string form ...

  8. lambda(匿名函数)---基于python

    在学习python的过程中,lambda的语法时常会使人感到困惑,lambda是什么,为什么要使用lambda,是不是必须使用lambda? 下面就上面的问题进行一下解答. 1.lambda是什么? ...

  9. 自我介绍for软件工程课程

    石家庄铁道大学学生,正在学习软件工程课程. 对于软件工程课程,没什么太大的希望.度了一下,发现软件工程课程近年来比较脱节,这次用新课本不知道效果怎么样.嗯,等课本到手看看再说吧. 自己的目标:我希望能 ...

  10. HDU 5265 pog loves szh II 二分

    题目链接: hdu:http://acm.hdu.edu.cn/showproblem.php?pid=5265 bc(中文):http://bestcoder.hdu.edu.cn/contests ...