如下所示:

import pickle as pkl
import numpy as np
from matplotlib import pyplot as plt
from tsne import bh_sne
import sys with open("data", 'rb') as f:
if sys.version_info > (3, 0):
data = pkl.load(f, encoding='latin1')
else:
data = pkl.load(f) data =data.astype('float64') with open("label", 'rb') as f:
if sys.version_info > (3, 0):
y_data = pkl.load(f, encoding='latin1')
else:
y_data = pkl.load(f)
classNum = 6
y_data = np.where(y_data==1)[1]*(9.0/classNum) vis_data = bh_sne(data) # plot the result
vis_x = vis_data[:, 0]
vis_y = vis_data[:, 1] fig = plt.figure()
plt.scatter(vis_x, vis_y, c=y_data, s=1, cmap=plt.cm.get_cmap("jet", 10))
plt.colorbar(ticks=range(10))
plt.clim(-0.5, 9.5)
plt.show()
fig.savefig('test.png')

结果:

以MNIST为例,先做PCA降到50维,再做t-sne:

from time import time
from tsne import bh_sne
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
from matplotlib import offsetbox
from sklearn import (manifold, datasets, decomposition, ensemble,
discriminant_analysis, random_projection)
from sklearn import decomposition mnist = input_data.read_data_sets('./input_data', one_hot=False)
sub_sample = 5000
y = mnist.train.labels[0:sub_sample]
X = mnist.train.images[0:sub_sample] n_samples, n_features = X.shape
n_neighbors = 30 #----------------------------------------------------------------------
# Scale and visualize the embedding vectors
def plot_embedding(X_emb, title=None):
x_min, x_max = np.min(X_emb, 0), np.max(X_emb, 0)
X_emb = (X_emb - x_min) / (x_max - x_min) plt.figure()
ax = plt.subplot(111)
for i in range(X_emb.shape[0]):
plt.text(X_emb[i, 0], X_emb[i, 1], str(y[i]),
color=plt.cm.Set1(y[i] / 10.),
fontdict={'weight': 'bold', 'size': 9}) if hasattr(offsetbox, 'AnnotationBbox'):
# only print thumbnails with matplotlib > 1.0
shown_images = np.array([[1., 1.]]) # just something big
for i in range(sub_sample):
dist = np.sum((X_emb[i] - shown_images) ** 2, 1)
if np.min(dist) < 8e-3:
# don't show points that are too close
continue
shown_images = np.r_[shown_images, [X_emb[i]]]
imagebox = offsetbox.AnnotationBbox(
offsetbox.OffsetImage(X[i].reshape(28,28)[::2,::2], cmap=plt.cm.gray_r),
X_emb[i])
ax.add_artist(imagebox)
plt.xticks([]), plt.yticks([])
if title is not None:
plt.title(title) #----------------------------------------------------------------------
# Plot images of the digits
n_img_per_row = 20
img = np.zeros((30 * n_img_per_row, 30 * n_img_per_row))
for i in range(n_img_per_row):
ix = 30 * i + 1
for j in range(n_img_per_row):
iy = 30 * j + 1
img[ix:ix + 28, iy:iy + 28] = X[i * n_img_per_row + j].reshape((28, 28)) plt.imshow(img, cmap=plt.cm.binary)
plt.xticks([])
plt.yticks([])
plt.title('A selection from the 64-dimensional digits dataset') # t-SNE embedding of the digits dataset
print("Computing t-SNE embedding")
t0 = time()
X_pca = decomposition.TruncatedSVD(n_components=50).fit_transform(X)
# data =X.astype('float64')
X_tsne = bh_sne(X_pca) plot_embedding(X_tsne,
"t-SNE embedding of the digits (time %.2fs)" %
(time() - t0)) plt.show()

结果如下:

更多降维的可视化参考:http://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html#sphx-glr-auto-examples-manifold-plot-lle-digits-py

t-SNE可视化(MNIST例子)的更多相关文章

  1. 一个简单的TensorFlow可视化MNIST数据集识别程序

    下面是TensorFlow可视化MNIST数据集识别程序,可视化内容是,TensorFlow计算图,表(loss, 直方图, 标准差(stddev)) # -*- coding: utf-8 -*- ...

  2. Tensorflow可视化MNIST手写数字训练

    简述] 我们在学习编程语言时,往往第一个程序就是打印“Hello World”,那么对于人工智能学习系统平台来说,他的“Hello World”小程序就是MNIST手写数字训练了.MNIST是一个手写 ...

  3. 可视化MNIST之降维探索Visualizing MNIST: An Exploration of Dimensionality Reduction

    At some fundamental level, no one understands machine learning. It isn’t a matter of things being to ...

  4. 莫烦TensorFlow_09 MNIST例子

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...

  5. (4运行例子)自己动手,编写神经网络程序,解决Mnist问题,并网络化部署

    ​1.联通ColaB 2.运行最基础mnist例子,并且打印图表结果  # https://pypi.python.org/pypi/pydot#!apt-get -qq install -y gra ...

  6. 使用t-SNE做降维可视化

    最近在做一个深度学习分类项目,想看看训练集数据的分布情况,但由于数据本身维度接近100,不能直观的可视化展示,所以就对降维可视化做了一些粗略的了解以便能在低维空间中近似展示高维数据的分布情况,以下内容 ...

  7. 用vs2013(cpu-only)调试caffe的mnist

    在调试Mnist例子之前,首先需要用vs2013编译好caffe.详情请参见: [caffe-Windows]caffe+VS2013+Windows无GPU快速配置教程 按照上述教程编译好caffe ...

  8. [转] kaldi中FST的可视化-以yesno为例

    http://blog.csdn.net/u013677156/article/details/77893661 1.kaldi解码过程 kaldi识别解码一段语音的过程是:首先提取特征,然后过声学模 ...

  9. Caffe 使用记录(一)mnist手写数字识别

    1. 运行它 1. 安装caffe请参考 http://www.cnblogs.com/xuanyuyt/p/5726926.html  此例子在官网 http://caffe.berkeleyvis ...

随机推荐

  1. Android利用广播监听设备网络连接(断网)的变化情况

    http://www.open-open.com/lib/view/open1379302453943.html

  2. 修改 Input placeholder 的样式

    ::-webkit-input-placeholder { /* WebKit browsers */ color: #ccc; } :-moz-placeholder { /* Mozilla Fi ...

  3. 统一日志监控系统 springboot websocket 简单版 王代军-作品

    http://git.oschina.net/redArmy/springboot-websocket-logs 目的: 统一监控 开发测试环境日志 如果需要可以拓展线上环境的日志(自己视情况而定) ...

  4. cocos2dx 3.3 场景切出时RenderTexture crash

    在cocos2dx 3.3中下面myScene在切出时会存在概率性崩溃(代码作了最大程度简化,仅为说明问题): class CmyLayer:public Layer{ public: CmyLaye ...

  5. 子墨庖丁Android的ActionBar源代码分析 (一)实例化

    假设你从事过Androidclient开发,相信你对ActionBar这套框架并不陌生,或者说你并不了解它,可是你应该时不时的要跟它打交道.抛开ActionBar的实现不说,ActionBar实际上是 ...

  6. Linux上添加新硬盘的实例介绍

    在Linux上添加新硬盘的实例讲解,有需要的朋友可以看看. 系统:Redhat AS3 UP3硬盘:scsi注意:# 表示是root用户执行的命令 [root@cncmail data1]# fdis ...

  7. nginx中配置404错误页面的教程

    什么是404页面如果网站出了问题,或者用户试图访问一个并不存在的页面时,此时服务器会返回代码为404的错误信息,此时对应页面就是404页面.404页面的默认内容和具体的服务器有关.如果后台用的是NGI ...

  8. [svc]运维知识体系及职业

    知识点: 1,运维命令基础 100个命令 三剑客 正则 2,运维基础知识 linux启动 目录结构 常见配置路径 文件属性 链接知识 权限 用户管理 磁盘管理 网络基础(配置ip路由等) 3,基础核心 ...

  9. dp之分组背包hdu3033 最少取1次的解法(推荐)

    题意:有n双鞋子,m块钱,k个品牌,(一个品牌可以有多种价值不同的鞋子),接下来n种不同的鞋子,a为所属品牌,b为要花费的钱,c为所能得到的价值.每种价值的鞋子只会买一双,有个人有个伟大的梦想,每个品 ...

  10. ID、Class和标签选择器优先级

    按一般论:ID > Class > 标签 1.如以下样式: <div id="id" class="class">选择器优先权</ ...