https://www.w3cschool.cn/tensorflow_python/tensorflow_python-4isv2ez3.html

tf.trainable_variables返回的是需要训练的变量列表

tf.all_variables返回的是所有变量的列表

import tensorflow as tf;
import numpy as np;
import matplotlib.pyplot as plt; v = tf.Variable(tf.constant(0.0, shape=[1], dtype=tf.float32), name='v')
v1 = tf.Variable(tf.constant(5, shape=[1], dtype=tf.float32), name='v1') global_step = tf.Variable(tf.constant(5, shape=[1], dtype=tf.float32), name='global_step', trainable=False)
ema = tf.train.ExponentialMovingAverage(0.99, global_step) for ele1 in tf.trainable_variables():
print ele1.name
for ele2 in tf.all_variables():
print ele2.name

输出:

v:0
v1:0

v:0
v1:0
global_step:0

分析:

上面得到两个变量,后面的一个得到上三个变量,因为global_step在声明的时候说明不是训练变量,用来关键字trainable=False。

》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》

tf.train.batch和tf.train.batch_join区别

http://blog.sina.com.cn/s/blog_6ca0f5eb0102wppn.html

这样就很容易明白了tf.train.batch和tf.train.batch_join的区别,一般来说,单一文件多线程,那么选用tf.train.batch(需要打乱样本,有对应的tf.train.shuffle_batch);

而对于多线程多文件的情况,一般选用tf.train.batch_join来获取样本(打乱样本同样也有对应的tf.train.shuffle_batch_join使用)。

》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》

capacity是队列的长度
min_after_dequeue是出队后,队列至少剩下min_after_dequeue个数据
假设现在有个test.tfrecord文件,里面按从小到大顺序存放整数0~100
1. tf.train.batch是按顺序读取数据,队列中的数据始终是一个有序的队列,
比如队列的capacity=20,开始队列内容为0,1,..,19=>读取10条记录后,队列剩下10,11,..,19,然后又补充10条变成=>10,11,...,29,
队头一直按顺序补充,队尾一直按顺序出队,到了第100条记录后,又重头开始补充0,1,2...

2. tf.train.shuffle_batch是将队列中数据打乱后,再读取出来,因此队列中剩下的数据也是乱序的,队头也是一直在补充(我猜也是按顺序补充),
比如batch_size=5,capacity=10,min_after_dequeue=5,
初始是有序的0,1,..,9(10条记录),
然后打乱8,2,6,4,3,7,9,2,0,1(10条记录),
队尾取出5条,剩下7,9,2,0,1(5条记录),
然后又按顺序补充进来,变成7,9,2,0,1,10,11,12,13,14(10条记录),
再打乱13,10,2,7,0,12...1(10条记录),

再出队...

capacity可以看成是局部数据的范围,读取的数据是基于这个范围的,

在这个范围内,min_after_dequeue越大,数据越乱

这样按batch读取的话,最后会自动在前面添加一个维度,比如数据的维度是[1],batch_size是10,那么读取出来的shape就是[10,1]

》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》

tf.add_to_collection:把变量放入一个集合,把很多变量变成一个列表

tf.get_collection:从一个结合中取出全部变量,是一个列表

tf.add_n:把一个列表的东西都依次加起来

例如:

import tensorflow as tf;
import numpy as np;
import matplotlib.pyplot as plt;

v1 = tf.get_variable(name='v1', shape=[1], initializer=tf.constant_initializer(1))
tf.add_to_collection('loss', v1)
v2 = tf.get_variable(name='v2', shape=[1], initializer=tf.constant_initializer(2))
tf.add_to_collection('loss', v2)

with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
print tf.get_collection('loss')
print sess.run(tf.add_n(tf.get_collection('loss')))

输出:

[<tensorflow.python.ops.variables.Variable object at 0x7f6b5d700c50>, <tensorflow.python.ops.variables.Variable object at 0x7f6b5d700c90>]
[ 3.]

》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》

在Tensorflow中,为解决设定学习率(learning rate)问题,提供了指数衰减法来解决。

通过tf.train.exponential_decay函数实现指数衰减学习率。

步骤:1.首先使用较大学习率(目的:为快速得到一个比较优的解);

2.然后通过迭代逐步减小学习率(目的:为使模型在训练后期更加稳定);

代码实现:

其中,decayed_learning_rate为每一轮优化时使用的学习率;

learning_rate为事先设定的初始学习率;

decay_rate为衰减系数;

decay_steps为衰减速度。

而tf.train.exponential_decay函数则可以通过staircase(默认值为False,当为True时,(global_step/decay_steps)则被转化为整数) ,选择不同的衰减方式。

代码示例:

learning_rate:0.1;staircase=True;则每100轮训练后要乘以0.96.

通常初始学习率,衰减系数,衰减速度的设定具有主观性(即经验设置),而损失函数下降的速度与迭代结束之后损失的大小没有必然联系,

所以神经网络的效果不能单一的通过前几轮损失函数的下降速度来比较。

》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》

tf.nn.in_top_k组要是用于计算预测的结果和实际结果的是否相等,返回一个bool类型的张量,

tf.nn.in_top_k(prediction, target, K):prediction就是表示你预测的结果,大小就是预测样本的数量乘以输出的维度,类型是tf.float32等。target就是实际样本类别的标签,大小就是样本数量的个数。K表示每个样本的预测结果的前K个最大的数里面是否含有target中的值。一般都是取1。

例如:

  1. import tensorflow as tf;
  2. A = [[0.8,0.6,0.3], [0.1,0.6,0.4]]
  3. B = [1, 1]
  4. out = tf.nn.in_top_k(A, B, 1)
  5. with tf.Session() as sess:
  6. sess.run(tf.initialize_all_variables())
  7. print sess.run(out)

输出:

[False  True]

解释:因为A张量里面的第一个元素的最大值的标签是0,第二个元素的最大值的标签是1.。但是实际的确是1和1.所以输出就是False 和True。如果把K改成2,那么第一个元素的前面2个最大的元素的位置是0,1,第二个的就是1,2。实际结果是1和1。包含在里面,所以输出结果就是True 和True.如果K的值大于张量A的列,那就表示输出结果都是true

tensorflow函数学习笔记的更多相关文章

  1. Tensorflow 函数学习笔记

    A: A:## tf.argmax(A, axis).eval() 输出axis维度上最大的数的索引 axis=0:列,axis=1:行 A:## tf.add(a,b)  创建a+b的计算图 A:# ...

  2. C++学习基础十六-- 函数学习笔记

    C++ Primer 第七章-函数学习笔记 一步一个脚印.循序渐进的学习. 一.参数传递 每次调用函数时,都会重新创建函数所有的形参,此时所传递的实参将会初始化对应的形参. 「如果形参是非引用类型,则 ...

  3. Google TensorFlow深度学习笔记

    Google Deep Learning Notes Google 深度学习笔记 由于谷歌机器学习教程更新太慢,所以一边学习Deep Learning教程,经常总结是个好习惯,笔记目录奉上. Gith ...

  4. contiki-main.c 中的process系列函数学习笔记 <contiki学习笔记之六>

    说明:本文依然依赖于 contiki/platform/native/contiki-main.c 文件. ---------------------------------------------- ...

  5. TensorFlow深度学习笔记 循环神经网络实践

    转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 加 ...

  6. Swift2.0 函数学习笔记

    最近又有点忙,忙着找工作,忙着适应这个新环境.现在好了,上班两周周了,也适应过来了,又有时间安安静静的就行我们前面的学习了.今天这篇笔记,记录的就是函数的使用.下面这些代码基本上是理清楚了函数的额使用 ...

  7. MYSQL存储过程和函数学习笔记

    学至Tarena金牌讲师,金色晨曦科技公司技术总监沙利穆课程笔记的综合. 1. 什么是存储过程和函数 将SQL语句放入一个集合里,然后直接调用存储过程和函数来执行已经定义好的SQL语句,通过存储过程和 ...

  8. TensorFlow深度学习笔记 Tensorboard入门

    转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程: https://ww ...

  9. TensorFlow 深度学习笔记 卷积神经网络

    Convolutional Networks 转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Is ...

随机推荐

  1. 字符串 - KMP模式匹配

    在朴素的模式匹配算法中,主串的pos值(i)是不断地回溯来完成的(见字符串的基本操作中的Index函数).而计算机的大仙们发现这种回溯其实可以是不需要的.既然i值不回溯,也就是不可以变小,那么考虑的变 ...

  2. Linux调度器 - deadline调度器

    一.概述 实时系统是这样的一种计算系统:当事件发生后,它必须在确定的时间范围内做出响应.在实时系统中,产生正确的结果不仅依赖于系统正确的逻辑动作,而且依赖于逻辑动作的时序.换句话说,当系统收到某个请求 ...

  3. Go 普通LOG输出

    因为Go 语言中没有自带的宏, 来表示行号和文件, 需要从方法中去获取,麻烦.所以封装了一个函数,用于输出平时程序的打印日志 import ( "fmt" "log&qu ...

  4. Javascript变量名混淆细节

    前言 UglifyJS会对JS文件的变量名进行混淆处理.要理解Javascript变量混淆的细节.我们须要回答下面几个问题: 1.遇到一个变量myName,我们怎么知道这个myName变量要不要混淆 ...

  5. 温故而知新: 关于 js Form 方式提交的一些新认知

    这里介绍的是通过js进行异步form提交,而不是表单Form Submit提交. 提交方式主要有以下两种: 参数为字符串方式的提交,如:a=b&c=d formData方式提交, 如:new ...

  6. php - 中文字符串分割

    //先删除掉非中文的字体$str = preg_replace('/[^\x{4e00}-\x{9fa5}]/u', '', $str);//经过测试中文占3个篇幅$re = chunk_split( ...

  7. MongoDB查询指定字段(field)返回指定字段的方法

    使用MongoDB的时候需要只查询指定的字段进行返回,也就是类似mysql里面的 SELECT id,name,age 这样而不是SELECT *.在MongoDB里面映射(projection)声明 ...

  8. 分享一个不错的squid 配置文件

    squid配置文件一例,只使用了web cache功能,用来给web加速. http_port 80 defaultsite=IPicp_port 0cache_peer ip parent 85 0 ...

  9. linux系统资源网站

    http://upstream.rosalinux.ru/    API/ABI changes analysis for C/C++ libraries

  10. Oracle PLSQL Demo - 07.LOOP循环,以EXIT WHEN退出[EXIT in LOOP]

    declare v_sal ; begin loop v_sal :; dbms_output.put_line(v_sal); ; end loop; end;