51nod 1098 最小方差 排序+前缀和+期望方差公式
题目:
题目要我们,在m个数中,选取n个数,求出这n个数的方差,求方差的最小值。
1.我们知道,方差是描述稳定程度的,所以肯定是着n个数越密集,方差越小。
所以我们给这m个数排个序,从连续的n个数中找。
2.方差公式D(x^2) = E(x^2)- E(x)^2;
E(x) = x*f(x) dx (从负无穷到正无穷积分)
E (x^2) = x^2*f(x) dx (从负无穷到正无穷积分)
3.对于这道题,相当于每个数的权值相同,也就是f(x)相同,都等于1/n。(可以理解f(x)表示概率)
4.我们可以用前缀和来减少时间复杂度。
sum1[i]表示前 i 项的和,方便算出E(x)^2
sum2[i]表示前 i 项平方和 ,方便算出E(x^2)
当我们要算第 i 项到第 j 项共 j-i+1 项的方差的时候我们只用这样写:
ll k1 = sum1[j]-sum1[i-]; // 第i项到第j项的和
double s1 = 1.0*k1/n*k1/n; // k1/n表示平均数E(x), s1表示E(x)^2
ll k2 = sum2[j]-sum2[i-]; // 第i项到第j项的平方和
double s2 = 1.0*k2/n; // s2 和 k2/n 表示E(x^2)
第 i 项到第 j 项的方差就等于 s2-s1 了。
5.我们可以得到大致代码,当然现在就可以直接开始敲了,如果看懂了的话。
double mn = 2e18;
for(int i = n;i <= m; i++){
ll k1 = sum1[i]-sum1[i-n];
double s1 = 1.0*k1/n*k1/n;
ll k2 = sum2[i]-sum2[i-n];
double s2 = 1.0*k2/n; mn = min(s2-s1,mn);
}
6.我们要注意一下精度问题,我的做法是给mn += 1e-8。
代码:
#include <bits\stdc++.h>
using namespace std;
typedef long long ll; int a[];
ll sum1[]; //sum1[i]表示前i项和
ll sum2[]; //sum2[i]表示前i项平方和
int main() {
ll m,n;
cin >> m >> n;
for(int i = ;i <= m; i++){
cin >> a[i];
} sort(a+,a++m); // 排个序,让数字变得紧凑
for(int i = ;i <= m; i++){
sum1[i] = sum1[i-] + a[i];
sum2[i] = sum2[i-] + a[i]*a[i];
} double mn = 2e18; //存最小的方差
for(int i = n;i <= m; i++){
ll k1 = sum1[i]-sum1[i-n]; // 第 i-n+1 项到第 i项共 n 项的和。
double s1 = 1.0*k1/n*k1/n; // k1/n表示平均数E(x),s1表示 E(x)^2
ll k2 = sum2[i]-sum2[i-n]; // 第 i-n+1 项到第 i项共 n 项的和。
double s2 = 1.0*k2/n; // k2/n表示E(x^2) mn = min(s2-s1,mn);
} // 如果不加这个可能会出问题,因为cout double用的是科学记数法,需要消除误差。
mn += 1e-;
cout << (ll)(mn*n) << endl;
return ;
}
// writen by zhangjiuding
51nod 1098 最小方差 排序+前缀和+期望方差公式的更多相关文章
- 51Nod 1098 最小方差 (数论)
#include <iostream> #include <cstdio> #include <algorithm> using namespace std; ty ...
- 51nod 1098 最小方差
#include <iostream> #include <cstdio> #include <algorithm> using namespace std; ty ...
- 51nod 1065 最小正子段和
题目链接:51nod 1065 最小正子段和 房教说用前缀和做,然后看了别人博客懂了后就感觉,这个真有意思... #include<cstdio> #include<cstring& ...
- java算法----排序----(6)希尔排序(最小增量排序)
package log; public class Test4 { /** * java算法---希尔排序(最小增量排序) * * @param args */ public static void ...
- 51nod 1065 最小正字段和 解决办法:set存前缀和,二分插入和二分查找
题目: 这题要求大于0的最小字段和,常规O(n)求最大字段和的方法肯定是没法解的. 我的解法是:用sum[i]存前i项的和,也就是前缀和. 这题就变成了求sum[j]-sum[i]的大于0的最小值( ...
- 51nod 1065 最小正子段和 (贪心)
题目:传送门. 题意:中文题. 题解:求前缀和,并且标记每个数的下标,按照前缀和大小进行从小到大排序.随后进行遍历,如果满足下标data[i-1].id<data[i].id&& ...
- 51nod 1510 最小化序列 | DP 贪心
题目描述 现在有一个长度为n的数组A,另外还有一个整数k.数组下标从1开始. 现在你需要把数组的顺序重新排列一下使得下面这个的式子的值尽可能小. ∑|A[i]−A[i+k]| 特别的,你也可以不对数组 ...
- 51nod 1682 中位数计数(前缀和)
51nod 1682 中位数计数 思路: sum[i]表示到i为止的前缀和(比a[i]小的记为-1,相等的记为0,比a[i]大的记为1,然后求这些-1,0,1的前缀和): hash[sum[i]+N] ...
- 51nod 1283 最小周长【注意开根号】
1283 最小周长 题目来源: Codility 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 收藏 关注 一个矩形的面积为S,已知该矩形的边长都是整数,求所有 ...
随机推荐
- caffe.bin caffe的框架
最近打算看一看caffe实现的源码,因为发现好多工作都是基于改动网络来实现自己的的目的.比如变更目标函数以及网络结构,以实现图片风格转化或者达到更好的效果. 深度学习框架 https://mp.wei ...
- Sumblime Text3中使用vue-cli创建vue项目,代码不高亮,解决
问题如下:在Sumblime Text3中打开vue-cli常见的项目,代码一片灰色 解决如下: 第一步:下载文件Vue components 链接 GitHub - vuejs/vue-synta ...
- WCF(二)配置文件
上篇文章中对WCF的配置放到App.config中,这样可以使程序更灵活.更具有扩展性. 下面说下配置文件中各个节点的含义. 服务端: WCF配置文件节点放在<system.serviceMod ...
- POJ 1995 Raising Modulo Numbers 【快速幂取模】
题目链接:http://poj.org/problem?id=1995 解题思路:用整数快速幂算法算出每一个 Ai^Bi,然后依次相加取模即可. #include<stdio.h> lon ...
- 【AnjularJS系列6 】 过滤器
第六篇,过滤器 AngularJS 过滤器可用于转换数据: 过滤器 描述 currency 格式化数字为货币格式. filter 从数组项中选择一个子集. lowercase 格式化字符串为小写. o ...
- selenium基础
浏览器 selenium本质是通过驱动浏览器,完全模拟浏览器的操作,比如跳转.输入.点击.下拉等来拿到网页渲染之后的结果,可支持多种浏览器 官网链接:http://selenium-python.re ...
- codecademy练习记录--Learn Python(70%)
############################################################################### codecademy python 5. ...
- Ubuntu_18.04安装网易云音乐
首先到网易云音乐官网下载网易云音乐,ubuntu版的,安装. 这时候的图标打不开,缺少libcanberra sudo apt install libcanberra-gtk-module 安装完了配 ...
- 如何设置,获取,删除cookie?
cookie : 存储数据,当用户访问了某个网站(网页)的时候,我们就可以通过cookie来像访问者电脑上存储数据 1.不同的浏览器存放的cookie位置不一样,也是不能通用的 2.cookie的存储 ...
- 小程序(Wepy)--生成海报图片
对于小程序的分享, 除了分享给朋友, 好友群,是可以直接做到的, 但是要想扩大推广范围, 通过生成海报图片, 将自己小程序码带进去,应该是目前我所知的好办法了. 但是海报也不是那么好搞.之前自己手写出 ...