分布式机器学习框架:CXXNet
caffe是很优秀的dl平台。影响了后面很多相关框架。
cxxnet借鉴了很多caffe的思想。相比之下,cxxnet在实现上更加干净,例如依赖很少,通过mshadow的模板化使得gpu和cpu代码只用写一份,分布式接口也很干净。
CXXNET:极致的C++深度学习库
cxxnet是一个并行的深度神经网络计算库,它继承了xgboost的简洁和极速的基因,并开始被越来越多人使用。例如Happy Lantern Festival团队借助Cxxnet在近期的Kaggle数据科学竞赛中获得了第二名。在技术上,cxxnet有如下两个亮点。
灵活的公式支持和极致的C++模板编程
追求速度极致的开发者通常使用C++来实现深度神经网络。但往往需要给每个神经网络的层和更新公式编写独立的CUDA kernel。很多以C++为核心的代码之所以没有向matlab/numpy那样支持非常灵活的张量计算,是因为因为运算符重载和临时空间的分配会带来效率的降低。
然而,cxxnet利用深盟的mshadow提供了类似matlab/numpy的编程体验,但同时保留了C++性能的高效性。其背后的核心思想是expression template,它通过模板编程技术将开发者写的公式自动展开成优化过的代码,避免重载操作符等带来的额外数据拷贝和系统消耗。另外,mshadow通过模板使得非常方便的讲代码切换到CPU还是GPU运行。
通用的分布式解决方案
在分布式深度神经网络中,我们既要处理一台机器多GPU卡,和多台机器多GPU卡的情况。然而后者的延迟和带宽远差于前者,因此需要对这种两个情形做不同的技术考虑。cxxnet采用mshadow-ps这样一个统一的参数共享接口,并利用接下来将要介绍Parameter Server实现了一个异步的通讯接口。其通过单机多卡和多机多卡采用不同的数据一致性模型来达到算法速度和系统性能的最佳平衡。
我们在单机4块GTX 980显卡的环境下测试了流行的图片物体识别数据集ImageNet和神经网络配置AlexNet。在单卡上,cxxnet能够处理244张图片每秒,而在4卡上可以提供3.7倍的加速。性能超过另一个流行深度学习计算库Caffe(均使用CUDA 6.5,未使用cuDNN加速)。
在多机情况下,我们使用Amazon EC2的GPU实例来测试性能。由于优秀的异步通信,cxxnet打满了机器的物理带宽,并提供了几乎是线性的加速比,如图2所示。
图2 cxxnet在Amazon EC2上的加速比
cxxnet的另外一些特性:
- 轻量而齐全的框架:推荐环境下仅需要CUDA、OpenCV、MKL或BLAS即可编译。
- cuDNN支持:Nvidia原生卷积支持,可加速计算30%。
- 及时更新的最新技术:及时跟进学术界的动态,例如现在已经支持MSRA的ParametricRelu和Google的BatchNormalization。
- Caffe模型转换:支持将训练好的Caffe模型直接转化为cxxnet模型。
分布式机器学习框架:CXXNet的更多相关文章
- 分布式机器学习框架:MxNet 前言
原文连接:MxNet和Caffe之间有什么优缺点一.前言: Minerva: 高效灵活的并行深度学习引擎 不同于cxxnet追求极致速度和易用性,Minerva则提供了一个高效灵活的平台 ...
- Adam:大规模分布式机器学习框架
引子 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/46676515 又是好久没写博客,记得有一次看Ng大神的訪谈录,假设每周读三篇论文, ...
- 分布式机器学习框架:MxNet
MxNet官网: http://mxnet.readthedocs.io/en/latest/ 前言: caffe是很优秀的dl平台.影响了后面很多相关框架. cxxnet借鉴了很多caffe的思想. ...
- Angel 实现FFM 一、对于Angel 和分布式机器学习的简单了解
Angel是腾讯开源的一个分布式机器学习框架.是一个PS模式的分布式机器学习框架. https://github.com/Angel-ML/angel 这是github地址. 我了解的分布式机器学 ...
- 分布式机器学习系统笔记(一)——模型并行,数据并行,参数平均,ASGD
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 文章索引::"机器学 ...
- 使用Java语言开发机器学习框架和参数服务器
https://github.com/wudikua/ps 本项目是我自己动手实现的机器学习训练框架,代码简单,有很多不完善,但是也保留了最小可用功能 通过自己编写这个项目,可以帮助自己入门机器学习 ...
- Spark MLBase分布式机器学习系统入门:以MLlib实现Kmeans聚类算法
1.什么是MLBaseMLBase是Spark生态圈的一部分,专注于机器学习,包含三个组件:MLlib.MLI.ML Optimizer. ML Optimizer: This layer aims ...
- 微软分布式机器学习工具包DMTK——初窥门径
在现在机器学习如日中天的大背景下,微软亚洲研究院的实习岗位中,机器学习组的工作也是维护DMTK,参与算法改进,那么在此之前我们得了解DMTK是个啥. DMTK由一个服务于分布式机器学习的框架和一组分布 ...
- 八大机器学习框架对比及Tensorflow的优势
八大机器学习框架的对比: (1) TensorFlow:深度学习最流行的库之一,是谷歌在深刻总结了其 前身 DistBelief 的经验教训上形成的:它不仅便携.高效.可扩 展,还能再不同计算机上运 ...
随机推荐
- 8.3 操作MongoDB数据库
一项权威调查显示,在大数据时代软件开发人员必备的十项技能中MongoDB数据库名列第二,仅次于HTML5.MongoDB是一个基于分布式文件存储的文档数据库,可以说是非关系型(Not Only SQL ...
- Mysql学习总结(41)——MySql数据库基本语句再体会
1.数据定义语言(DDL):定义和管理数据对象,比如建立数据库.数据表 数据操作语言(DML):用于操作数据库对象中的包含的数据. 数据查询语言(DQL):用于查询数据库对象中包含的数据,能够对表进行 ...
- hdu_1018_Big Number_201308191556
Big NumberTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total S ...
- [bzoj1812][IOI2006]riv_多叉树转二叉树_树形dp
riv bzoj-1812 IOI-2006 题目大意:给定一棵n个点树,要求在上面建立k个收集站.点有点权,边有边权,整棵树的代价是每个点的点权乘以它和它的最近的祖先收集站的距离积的和. 注释:$1 ...
- 洛谷——P2639 [USACO09OCT]Bessie的体重问题Bessie's We…
https://www.luogu.org/problem/show?pid=2639 题目描述 Bessie像她的诸多姊妹一样,因为从Farmer John的草地吃了太多美味的草而长出了太多的赘肉. ...
- sql简单优化点滴
select uppagent.agent_no AGENT_NO, ISNULL(countsubagent,0) REFERRAL_AGENT_NUM, ISNULL(countsubcustom ...
- 学习KNN算法体会和总结
k-d树(k-dimensional树的简称),是一种切割k维数据空间的数据结构.主要应用于多维空间重要数据的搜索(如:范围搜索和近期邻搜索). 索引结构中相似性查询有两种主要的方式:一种是范围查询( ...
- UVA 11825 状态压缩DP+子集思想
很明显的状态压缩思想了.把全集分组,枚举每个集合的子集,看一个子集是否能覆盖所有的点,若能,则f[s]=max(f[s],f[s^s0]+1).即与差集+1比较. 这种枚举集合的思想还是第一次遇到,果 ...
- jquery easyui datagrid实现数据改动
1.单击选中待改动行 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA= ...
- [iOS]怎样在iOS开发中切换显示语言实现国际化
1.在Project设置,加入中英两种语言: 2.新建Localizable.strings文件,作为多语言相应的词典,存储多种语言,点击右側Localization,勾选中英: watermark/ ...