caffe是很优秀的dl平台。影响了后面很多相关框架。

       cxxnet借鉴了很多caffe的思想。相比之下,cxxnet在实现上更加干净,例如依赖很少,通过mshadow的模板化使得gpu和cpu代码只用写一份,分布式接口也很干净。

CXXNET:极致的C++深度学习库

cxxnet是一个并行的深度神经网络计算库,它继承了xgboost的简洁和极速的基因,并开始被越来越多人使用。例如Happy Lantern Festival团队借助Cxxnet在近期的Kaggle数据科学竞赛中获得了第二名。在技术上,cxxnet有如下两个亮点。

灵活的公式支持和极致的C++模板编程

追求速度极致的开发者通常使用C++来实现深度神经网络。但往往需要给每个神经网络的层和更新公式编写独立的CUDA kernel。很多以C++为核心的代码之所以没有向matlab/numpy那样支持非常灵活的张量计算,是因为因为运算符重载和临时空间的分配会带来效率的降低。

然而,cxxnet利用深盟的mshadow提供了类似matlab/numpy的编程体验,但同时保留了C++性能的高效性。其背后的核心思想是expression template,它通过模板编程技术将开发者写的公式自动展开成优化过的代码,避免重载操作符等带来的额外数据拷贝和系统消耗。另外,mshadow通过模板使得非常方便的讲代码切换到CPU还是GPU运行。

通用的分布式解决方案

在分布式深度神经网络中,我们既要处理一台机器多GPU卡,和多台机器多GPU卡的情况。然而后者的延迟和带宽远差于前者,因此需要对这种两个情形做不同的技术考虑。cxxnet采用mshadow-ps这样一个统一的参数共享接口,并利用接下来将要介绍Parameter Server实现了一个异步的通讯接口。其通过单机多卡和多机多卡采用不同的数据一致性模型来达到算法速度和系统性能的最佳平衡。

我们在单机4块GTX 980显卡的环境下测试了流行的图片物体识别数据集ImageNet和神经网络配置AlexNet。在单卡上,cxxnet能够处理244张图片每秒,而在4卡上可以提供3.7倍的加速。性能超过另一个流行深度学习计算库Caffe(均使用CUDA 6.5,未使用cuDNN加速)。

在多机情况下,我们使用Amazon EC2的GPU实例来测试性能。由于优秀的异步通信,cxxnet打满了机器的物理带宽,并提供了几乎是线性的加速比,如图2所示。

图2 cxxnet在Amazon EC2上的加速比

cxxnet的另外一些特性:

  1. 轻量而齐全的框架:推荐环境下仅需要CUDA、OpenCV、MKL或BLAS即可编译。
  2. cuDNN支持:Nvidia原生卷积支持,可加速计算30%。
  3. 及时更新的最新技术:及时跟进学术界的动态,例如现在已经支持MSRA的ParametricRelu和Google的BatchNormalization。
  4. Caffe模型转换:支持将训练好的Caffe模型直接转化为cxxnet模型

分布式机器学习框架:CXXNet的更多相关文章

  1. 分布式机器学习框架:MxNet 前言

           原文连接:MxNet和Caffe之间有什么优缺点一.前言: Minerva: 高效灵活的并行深度学习引擎 不同于cxxnet追求极致速度和易用性,Minerva则提供了一个高效灵活的平台 ...

  2. Adam:大规模分布式机器学习框架

    引子 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/46676515 又是好久没写博客,记得有一次看Ng大神的訪谈录,假设每周读三篇论文, ...

  3. 分布式机器学习框架:MxNet

    MxNet官网: http://mxnet.readthedocs.io/en/latest/ 前言: caffe是很优秀的dl平台.影响了后面很多相关框架. cxxnet借鉴了很多caffe的思想. ...

  4. Angel 实现FFM 一、对于Angel 和分布式机器学习的简单了解

    Angel是腾讯开源的一个分布式机器学习框架.是一个PS模式的分布式机器学习框架. https://github.com/Angel-ML/angel   这是github地址. 我了解的分布式机器学 ...

  5. 分布式机器学习系统笔记(一)——模型并行,数据并行,参数平均,ASGD

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 文章索引::"机器学 ...

  6. 使用Java语言开发机器学习框架和参数服务器

    https://github.com/wudikua/ps 本项目是我自己动手实现的机器学习训练框架,代码简单,有很多不完善,但是也保留了最小可用功能 通过自己编写这个项目,可以帮助自己入门机器学习 ...

  7. Spark MLBase分布式机器学习系统入门:以MLlib实现Kmeans聚类算法

    1.什么是MLBaseMLBase是Spark生态圈的一部分,专注于机器学习,包含三个组件:MLlib.MLI.ML Optimizer. ML Optimizer: This layer aims ...

  8. 微软分布式机器学习工具包DMTK——初窥门径

    在现在机器学习如日中天的大背景下,微软亚洲研究院的实习岗位中,机器学习组的工作也是维护DMTK,参与算法改进,那么在此之前我们得了解DMTK是个啥. DMTK由一个服务于分布式机器学习的框架和一组分布 ...

  9. 八大机器学习框架对比及Tensorflow的优势

    八大机器学习框架的对比: (1)  TensorFlow:深度学习最流行的库之一,是谷歌在深刻总结了其 前身 DistBelief 的经验教训上形成的:它不仅便携.高效.可扩 展,还能再不同计算机上运 ...

随机推荐

  1. CODEVS 3500

    题目描述 输入3个数a,b,c,求a^b mod c=?输入描述          三个数a,b,c输出描述         一个数,即a^b mod c 的答案.样例输入5 10 9样例输出 4 基 ...

  2. 【Codeforces 522A】Reposts

    [链接] 我是链接,点我呀:) [题意] 有人转载官方号的动态. 又有其他人转载其他人转载的动态. 问你最长的一条转载动态的链有多长. [题解] 用map把每个人的英文都转成小写的 然后从map中获取 ...

  3. noip模拟赛 拼不出的数

    分析:如果每个数可以选任意多次,那么就是一个很普通的dp问题,这里每个数只能选一次,还是考虑dp,设f(i)表示1~i是否都能选上.考虑下一个数j,如果j > i + 1,那么i+1这个数就选不 ...

  4. [bzoj1878][SDOI2009]HH的项链_树状数组

    HH的项链 bzoj-1878 SDOI-2009 题目大意:给定一个n个数的序列,m次查询.查询区间数的种类个数. 注释:$1\le n \le 5\cdot 10^4$,$1\le m\le 2\ ...

  5. [poj3321]Apple Tree_dfs序_树状数组

    Apple Tree poj-3321 题目大意:给你一个根固定的树,每一个点的点权是0或1,查询子树点权和. 注释:$1\le n \le 10^5$. 想法:刚刚学习dfs序,刷到水题偶哈哈. 什 ...

  6. html实现 省——市——区三级联动

    html实现  省——市——区三级联动 html中实现三级联动是一个不错的demo,博主在这里跟大家分享一下实现的过程,以及自己在过程中出现的一些问题,仅供参考. 首先我们将全国的省市区数据导入进来, ...

  7. Python3-paramiko-SFTP上传文件夹到多台远程服务器

    # coding: utf-8 import paramiko import re import os from time import sleep # 定义一个类,表示一台远端linux主机 # 参 ...

  8. BNU 13289 Energetic Pandas DP

     Energetic Pandas  There are n bamboos of different weights Wi. There are n pandas of different capa ...

  9. 解析Qt元对象系统(四) 属性系统(确实比较方便)

    官方解释 我们在Qt源码中可以看到一个QObject的子类经常会用到一些Q_开头的宏,例如QMainWindow类开始部分代码是这样的: Q_PROPERTY(QSize iconSize READ ...

  10. 【Cocos2dx】Windows平台下Cocos2dx 2.x的下载、安装、配置,打造自己的Helloworld

    Cocos2dx就不废话介绍了, 很火的游戏引擎.关键是它开源.能够免费下载.学习.开发.不用搞这么多激活的东西. 以下以Cocos2dx 2.x为例说明这个平台的一些基本东西.尽管如今Cocos2d ...