BZOJ4182: Shopping(点分治,树上背包)
Description
马上就是小苗的生日了,为了给小苗准备礼物,小葱兴冲冲地来到了商店街。商店街有n个商店,并且它们之间的道路构成了一颗树的形状。
Input
输入第一行一个正整数T,表示测试数据组数。
Output
Sample Input
3 2
1 2 3
1 1 1
1 2 1
1 2
1 3
Sample Output
解题思路:
可以发现答案最后是一颗子树,所以我们只需要枚举子树就好了,由于根节点不定,所以靠点分治来实现枚举根(如果答案比一个子树大,那么一点会经过这个根),Dfs序跑出来做树形背包就好了。
多重背包二进制拆分一下就好了。
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
typedef long long lnt;
const int N=;
const int M=;
struct pnt{
int hd;
int wgt;
int w;
int c;
int d;
int ind;
int oud;
bool vis;
}p[N],stp;
struct ent{
int twd;
int lst;
}e[N<<];
int T,n,m;
int cnt;
int dfn;
int size;
int root;
int maxsize;
lnt ans;
int lin[N];
lnt dp[N][M];
void ade(int f,int t)
{
cnt++;
e[cnt].twd=t;
e[cnt].lst=p[f].hd;
p[f].hd=cnt;
return ;
}
void grc_dfs(int x,int f)
{
p[x].wgt=;
int maxs=-;
for(int i=p[x].hd;i;i=e[i].lst)
{
int to=e[i].twd;
if(to==f||p[to].vis)
continue;
grc_dfs(to,x);
p[x].wgt+=p[to].wgt;
if(maxs<p[to].wgt)
maxs=p[to].wgt;
}
maxs=std::max(maxs,size-p[x].wgt);
if(maxs<maxsize)
{
root=x;
maxsize=maxs;
}
return ;
}
void Build_dfs(int x,int f)
{
lin[++dfn]=x;
p[x].ind=dfn;
for(int i=p[x].hd;i;i=e[i].lst)
{
int to=e[i].twd;
if(to==f||p[to].vis)
continue;
Build_dfs(to,x);
}
p[x].oud=dfn;
return ;
}
void bin_dfs(int x)
{
p[x].vis=true;
dfn=;
Build_dfs(x,x);
for(int i=;i<=dfn+;i++)
for(int j=;j<=m;j++)
dp[i][j]=;
for(int i=dfn;i;i--)
{
int t=lin[i];
int w=p[t].d-;
for(int j=m;j>=p[t].c;j--)
dp[i][j]=dp[i+][j-p[t].c]+p[t].w;
for(int j=;;j<<=)
{
if(w<j)
j=w;
for(int k=m;k>=j*p[t].c;k--)
dp[i][k]=std::max(dp[i][k],dp[i][k-j*p[t].c]+j*p[t].w);
w-=j;
if(!w)
break;
}
for(int j=;j<=m;j++)
dp[i][j]=std::max(dp[i][j],dp[p[t].oud+][j]);
}
ans=std::max(ans,dp[][m]);
for(int i=p[x].hd;i;i=e[i].lst)
{
int to=e[i].twd;
if(p[to].vis)
continue;
root=;
size=p[to].wgt;
maxsize=0x3f3f3f3f;
grc_dfs(to,to);
bin_dfs(root);
}
return ;
}
int main()
{
//freopen("a.in","r",stdin);
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
p[i]=stp;
cnt=,ans=;
for(int i=;i<=n;i++)
scanf("%d",&p[i].w);
for(int i=;i<=n;i++)
scanf("%d",&p[i].c);
for(int i=;i<=n;i++)
scanf("%d",&p[i].d);
for(int i=;i<n;i++)
{
int a,b;
scanf("%d%d",&a,&b);
ade(a,b);
ade(b,a);
}
root=;
size=n;
maxsize=0x3f3f3f3f;
grc_dfs(,);
bin_dfs(root);
printf("%lld\n",ans);
}
return ;
}
BZOJ4182: Shopping(点分治,树上背包)的更多相关文章
- [BZOJ4182]Shopping (点分治+树上多重背包+单调队列优化)
[BZOJ4182]Shopping (点分治+树上多重背包+单调队列优化) 题面 马上就是小苗的生日了,为了给小苗准备礼物,小葱兴冲冲地来到了商店街.商店街有n个商店,并且它们之间的道路构成了一颗树 ...
- BZOJ 4182 Shopping (点分治+树上多重背包)
题目大意:给你一颗树,你有$m$元钱,每个节点都有一种物品,价值为$w$,代价为$c$,有$d$个,如果在$u$和$v$两个城市都购买了至少一个物品,那么$u,v$路径上每个节点也都必须买至少一个物品 ...
- bzoj4182 Shopping 点分治+单调队列优化多重背包
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4182 题解 有一个很直观的想法是设 \(dp[x][i]\) 表示在以 \(x\) 为根的子树 ...
- HDU 6268 Master of Subgraph (2017 CCPC 杭州 E题,树分治 + 树上背包)
题目链接 2017 CCPC Hangzhou Problem E 题意 给定一棵树,每个点有一个权值,现在我们可以选一些连通的点,并且把这点选出来的点的权值相加,得到一个和. 求$[1, m] ...
- Hdu 6268 点分治 树上背包 bitset 优化
给你一颗大小为n(3000)的树,树上每个点有点权(100000),再给你一个数m(100000) i为1~m,问树中是否存在一个子图,使得权值为i. 每次solve到一个节点 用一个bitset维护 ...
- bzoj4182/luoguP6326 Shopping(点分治,树上背包)
bzoj4182/luoguP6326 Shopping(点分治,树上背包) bzoj它爆炸了. luogu 题解时间 如果直接暴力背包,转移复杂度是 $ m^{2} $ . 考虑改成点分治. 那么问 ...
- HDU4044 GeoDefense(有点不一样的树上背包)
题目大概说一棵n个结点的树,每个结点都可以安装某一规格的一个塔,塔有价格和能量两个属性.现在一个敌人从1点出发但不知道他会怎么走,如果他经过一个结点的塔那他就会被塔攻击失去塔能量的HP,如果HP小于等 ...
- luogu 2014 选课 树上背包
树上背包 #include<bits/stdc++.h> using namespace std; ; const int inf=0x3f3f3f3f; vector<int> ...
- Crazy Shopping(拓扑排序+完全背包)
Crazy Shopping(拓扑排序+完全背包) Because of the 90th anniversary of the Coherent & Cute Patchouli (C.C. ...
随机推荐
- 分布式文件存储FastDFS(一)初识FastDFS
一.FastDFS简单介绍 FastDFS是一款开源的.分布式文件系统(Distributed File System),由淘宝开发平台部资深架构师余庆开发.作为一个分布式文件系统,它对文件进行管理. ...
- linux 下的select函数
函数原型 /* According to POSIX.1-2001 */ #include <sys/select.h> //头文件 /* According to earlier st ...
- Mysql基础部分,针对以后python使用
#redis 非关系型数据库#mysql 关系型数据库 表与表之间有数据关系 Oracle Mysql SqlServer DB2#多张表组合在一起就是数据库#冗余 存储两倍数据 可以使系统速度更快 ...
- java实习生的成长之路<转>
首先初识语法的阶段,必须要学会怎么操作对象,操作if和for,操作list set map,然后是线程.IO和jdbc什么的,其余的,若是一时不理解,可以后边需要时再学. 这阶段完了,你可以写些能在控 ...
- Android 使用Retrofit请求API数据
概览 Retrofit 是一个Square开发的类型安全的REST安卓客户端请求库.这个库为网络认证.API请求以及用OkHttp发送网络请求提供了强大的框架 .理解OkHttp 的工作流程见 这个 ...
- startActivityForResult and onActivityResult
startActivityForResult and onActivityResult startActivityForResult 开启Activity 组织数据之后 发送,onActivityRe ...
- Firefox 浏览器添加Linux jre插件
在安装 Java 平台时,Java 插件文件将作为该安装的一部分包含在内.要在 Firefox 中使用 Java,您需要从该发行版中的插件文件手动创建符号链接指向 Firefox 预期的其中一个位置. ...
- 手把手教你在VMware虚拟机中安装Ubuntu14.04系统
在VMware中创建完虚拟机之后,一般需要给虚拟机安装系统,比较受青睐的系统有Ubuntu和Centos,关于Centos系统的安装之前已经写过了,感兴趣的小伙伴可以戳这篇文章:靠谱的centos7. ...
- 关于Shiro的退出请求是如何关联到登录请求的思考
一.结论 先给出结论,是因为本身是很简单的道理.假设我们没有使用任何认证授权的框架,就简单的使用Cookie和HttpSession,那么用户登录后的每一个请求是如何关联上这个用户的呢?答案很简单,由 ...
- CSS 类、伪类和伪元素差别具体解释
CSS中的类(class)是为了方便过滤(即选择)元素,以给这类元素加入样式,class是定义在HTML文档树中的. 可是这在一些情况下是不够用的,比方用户的交互动作(悬停.激活等)会导致元素状态发生 ...