POJ 1201 & HDU1384 & ZOJ 1508 Intervals(差分约束+spfa 求最长路径)
题目链接:
POJ:http://poj.org/problem?id=1201
HDU:http://acm.hdu.edu.cn/showproblem.php?
pid=1384
ZOJ:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=508
Description
Write a program that:
reads the number of intervals, their end points and integers c1, ..., cn from the standard input,
computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i=1,2,...,n,
writes the answer to the standard output.
Input
ai <= bi <= 50000 and 1 <= ci <= bi - ai+1.
Output
Sample Input
5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1
Sample Output
6
Source
题意:(转)
[ai, bi]区间内和点集Z至少有ci个共同元素。那也就是说假设我用Si表示区间[0,i]区间内至少有多少个元素的话,那么Sbi - Sai >= ci,这样我们就构造出来了一系列边。权值为ci,可是这远远不够。由于有非常多点依旧没有相连接起来(也就是从起点可能根本就还没有到终点的路线),此时。我们再看看Si的定义。也不难写出0<=Si
- Si-1<=1的限制条件。尽管看上去是没有什么意义的条件,可是假设你也把它构造出一系列的边的话,这样从起点到终点的最短路也就顺理成章的出现了。
我们将上面的限制条件写为允许的形式:
Sbi - Sai >= ci
Si - Si-1 >= 0
Si-1 - Si >= -1
这样一来就构造出了三种权值的边。而最短路自然也就没问题了。
但要注意的是,因为查分约束系统里经常会有负权边,所以为了避免负权回路,往往用Bellman-Ford或是SPFA求解(存在负权回路则最短路不存在)。
PS:
由于求的是[ai,bi]区间,所以我们加入边的时候须要(u-1, v, w)!
把距离dis初始化为负无穷, if(dis[v] < dis[u] + w)就可以!
POJ 和ZOJ用队列和栈都能过,可是HDU用栈会超时,仅仅能用队列!
代码例如以下:(栈)
#include <cstdio>
#include <cstring>
#include <stack>
#include <iostream>
#include <algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define N 50017
#define M 50017
int n, m, k;
int Edgehead[N], dis[N];
struct Edge
{
int v,w,next;
} Edge[3*M];
bool vis[N];
//int cont[N];
int minn, maxx;
int MIN(int a, int b)
{
if(a < b)
return a;
return b;
}
int MAX(int a, int b)
{
if(a > b)
return a;
return b;
}
void Addedge(int u, int v, int w)
{
Edge[k].next = Edgehead[u];
Edge[k].w = w;
Edge[k].v = v;
Edgehead[u] = k++;
}
int SPFA( int start)//stack
{
int sta[N];
int top = 0;
//memset(cont,0,sizeof(cont);
for(int i = 1 ; i <= n ; i++ )
dis[i] = -INF;
dis[start] = 0;
//++cont[start];
memset(vis,false,sizeof(vis));
sta[++top] = start;
vis[start] = true;
while(top)
{
int u = sta[top--];
vis[u] = false;
for(int i = Edgehead[u]; i != -1; i = Edge[i].next)//注意
{
int v = Edge[i].v;
int w = Edge[i].w;
if(dis[v] < dis[u] + w)
{
dis[v] = dis[u]+w;
if( !vis[v] )//防止出现环
{
sta[++top] = v;
vis[v] = true;
}
// if(++cont[v] > n)//有负环
// return -1;
}
}
}
return dis[maxx];
}
int main()
{
int u, v, w;
while(~scanf("%d",&n))//n为目的地
{
k = 1;
memset(Edgehead,-1,sizeof(Edgehead));
minn = INF;
maxx = -1;
for(int i = 1 ; i <= n ; i++ )
{
scanf("%d%d%d",&u,&v,&w);
Addedge(u-1,v,w);
maxx = MAX(v,maxx);
minn = MIN(u-1,minn); }
for(int i = minn; i <= maxx; i++)//新边,保证图的连通性还必须加入每相邻两个整数点i,i+1的边
{
Addedge(i,i+1,0);
Addedge(i+1,i,-1);
}
int ans = SPFA(minn);//从点minn開始寻找最短路
printf("%d\n",ans);
}
return 0;
}
HDU队列:
#include <cstdio>
#include <cstring>
#include <stack>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define INF 0x3f3f3f3f
#define N 50017
#define M 50017
int n, m, k;
int Edgehead[N], dis[N];
struct Edge
{
int v,w,next;
} Edge[3*M];
bool vis[N];
//int cont[N];
int minn, maxx;
int MIN(int a, int b)
{
if(a < b)
return a;
return b;
}
int MAX(int a, int b)
{
if(a > b)
return a;
return b;
}
void Addedge(int u, int v, int w)
{
Edge[k].next = Edgehead[u];
Edge[k].w = w;
Edge[k].v = v;
Edgehead[u] = k++;
}
int SPFA( int start)//stack
{
queue<int>q;
//int sta[N];
//memset(cont,0,sizeof(cont);
int top = 0;
for(int i = minn ; i <= maxx ; i++ )
dis[i] = -INF;
dis[start] = 0;
//++cont[start];
memset(vis,false,sizeof(vis));
//sta[++top] = start;
q.push(start);
vis[start] = true;
while(!q.empty())
{
//int u = sta[top--];
int u = q.front();
q.pop();
vis[u] = false;
for(int i = Edgehead[u]; i != -1; i = Edge[i].next)//注意
{
int v = Edge[i].v;
int w = Edge[i].w;
if(dis[v] < dis[u] + w)
{
dis[v] = dis[u]+w;
if( !vis[v] )//防止出现环
{
//sta[++top] = v;
q.push(v);
vis[v] = true;
}
// if(++cont[v] > n)//有负环
// return -1;
}
}
}
return dis[maxx];
}
int main()
{
int u, v, w;
while(~scanf("%d",&n))//n为目的地
{ k = 1;
memset(Edgehead,-1,sizeof(Edgehead));
minn = INF;
maxx = -1;
for(int i = 1 ; i <= n ; i++ )
{
scanf("%d%d%d",&u,&v,&w);
Addedge(u-1,v,w);
maxx = MAX(v,maxx);
minn = MIN(u-1,minn); }
for(int i = minn; i <= maxx; i++)//新边,保证图的连通性还必须加入每相邻两个整数点i,i+1的边
{
Addedge(i,i+1,0);
Addedge(i+1,i,-1);
}
int ans = SPFA(minn);//从点minn開始寻找最短路
printf("%d\n",ans);
}
return 0;
}
POJ 1201 & HDU1384 & ZOJ 1508 Intervals(差分约束+spfa 求最长路径)的更多相关文章
- zoj 1508 Intervals (差分约束)
Intervals Time Limit: 10 Seconds Memory Limit: 32768 KB You are given n closed, integer interva ...
- poj 1201/zoj 1508 intervals 差分约束系统
// 思路 : // 图建好后 剩下的就和上一篇的 火烧连营那题一样了 求得解都是一样的 // 所以稍微改了就过了 // 最下面还有更快的算法 速度是这个算法的2倍#include <ios ...
- poj Layout 差分约束+SPFA
题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...
- poj 1201 Intervals(差分约束)
题目:http://poj.org/problem?id=1201 题意:给定n组数据,每组有ai,bi,ci,要求在区间[ai,bi]内至少找ci个数, 并使得找的数字组成的数组Z的长度最小. #i ...
- poj 1201 Intervals——差分约束裸题
题目:http://poj.org/problem?id=1201 差分约束裸套路:前缀和 本题可以不把源点向每个点连一条0的边,可以直接把0点作为源点.这样会快许多! 可能是因为 i-1 向 i 都 ...
- POJ 1201 Intervals || POJ 1716 Integer Intervals 差分约束
POJ 1201 http://poj.org/problem?id=1201 题目大意: 有一个序列,题目用n个整数组合 [ai,bi,ci]来描述它,[ai,bi,ci]表示在该序列中处于[ai, ...
- poj 1716 Integer Intervals (差分约束 或 贪心)
Integer Intervals Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 12192 Accepted: 514 ...
- poj1201 Intervals【差分约束+SPFA】
转载请注明出处,谢谢:http://www.cnblogs.com/KirisameMarisa/p/4303365.html ---by 墨染之樱花 题目链接:http://poj.org/pr ...
- poj1201 Intervals——差分约束
题目:http://poj.org/problem?id=1201 差分约束裸题: 设 s[i] 表示到 i 选了数的个数前缀和: 根据题意,可以建立以下三个限制关系: s[bi] >= s[a ...
随机推荐
- 一个php+jquery+json+ajax实例
json.php <!DOCTYPE html Public "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://ww ...
- Open CASCADE Technology(OCCT)概述
OCCT模块结构图 基础类: Foundation Classes module underlies all other OCCT classes; 模型数据: Modeling Data modul ...
- POJ 3275 Floyd传递闭包
题意:Farmer John想按照奶牛产奶的能力给她们排序.现在已知有N头奶牛(1 ≤ N ≤ 1,000).FJ通过比较,已经知道了M(1 ≤ M ≤ 10,000)对相对关系.每一对关系表示为&q ...
- leetcode 几道题目
是周六晚上的几道题,晚上11点半,睡的早,起不来! 494. Target Sum 分析:看完这题,看到数据范围,长度20,枚举就是1<<20 = 1e6, 然后单次20,总共就是2e8, ...
- jquery选择器(可见对象,不可见对象) +判断,对象(逆序)
//可见对象: $("li:visible ") //可见对象下的 隐藏对象 $("li:visible [type='hidden']") //获得 可见 的 ...
- -1.#IND000 &&图像类型转换
(1):float acos(float x) 参数x的范围为-1.0f到1.0f之间,返回值范围在0.0f到3.141592653f之间,值得注意的是:当x超出[-1.0f,1.0f]这个范围时此函 ...
- 易观OLAP算法大赛结果揭晓,开源组黑马放大招!
100+天激烈赛程,40+国内顶级技术豪门对决,历经研发内部测试.正式环境测试和易观数据正式环境跑benchmark三大阶段.10月28日,易观OLAP算法大赛优胜名单出炉! 40+技术门派比武 易观 ...
- Ad_hoc_polymorphism 备份
https://en.wikipedia.org/wiki/Polymorphism_(computer_science) https://en.wikipedia.org/wiki/Ad_hoc_p ...
- CorelDRAW X7软件中如何将图片剪贴到文字中
将 图片剪贴到文字中是平面设计常用的一种处理方法之一,将图片剪贴到文字中是指将图片置入到该文字,且图片的外轮廓是沿着文字的形状剪贴的,这种处理手法被广泛应用于排版设计中.本教程将带大家了解如何用Cor ...
- 序列模型(5)-----双向神经网络(BRNN)和深层循环神经网络(Deep RNN)
一.双向循环神经网络BRNN 采用BRNN原因: 双向RNN,即可以从过去的时间点获取记忆,又可以从未来的时间点获取信息.为什么要获取未来的信息呢? 判断下面句子中Teddy是否是人名,如果只从前面两 ...