修路方案

时间限制:3000 ms  |  内存限制:65535 KB
难度:5
描述

南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修路。

现在已经知道哪些城市之间可以修路,如果修路,花费是多少。

现在,军师小工已经找到了一种修路的方案,能够使各个城市都联通起来,而且花费最少。

但是,南将军说,这个修路方案所拼成的图案很不吉利,想让小工计算一下是否存在另外一种方案花费和刚才的方案一样,现在你来帮小工写一个程序算一下吧。

输入
第一行输入一个整数T(1<T<20),表示测试数据的组数

每组测试数据的第一行是两个整数V,E,(3<V<500,10<E<200000)分别表示城市的个数和城市之间路的条数。数据保证所有的城市都有路相连。

随后的E行,每行有三个数字A B L,表示A号城市与B号城市之间修路花费为L。
输出
对于每组测试数据输出Yes或No(如果存在两种以上的最小花费方案则输出Yes,如果最小花费的方案只有一种,则输出No)
样例输入
2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2
样例输出
No
Yes
来源
POJ题目改编
上传者
张云聪

次小生成树,这道题我用的克鲁斯卡尔实现,先找到最小生成树,然后开始枚举,每次排除一条边,看是否能找到下一个最小生成树,找到的时候一定要判断是不是已经把每一条边全部连入!!

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
struct node
{
int u,v,val;
int flog;
}edge[200000+10];
int pre[1000],m,n,minn;
void init()
{
for(int i=0;i<1000;i++)
pre[i]=i;
}
int cmp(node s1,node s2)
{
return s1.val<s2.val;
}
int find(int x)
{
return pre[x]==x?x:pre[x]=find(pre[x]);
}
int F(int w)
{
int sum=0;
for(int i=0;i<m;i++)
{
if(i!=w)
{
int fx=find(edge[i].u);
int fy=find(edge[i].v);
if(fx!=fy)
{
pre[fx]=fy;
sum+=edge[i].val;
}
}
}
int s=find(1);//判断全部的点是不是已经全部连进去
for(int i=2;i<=n;i++)
if(pre[i]!=s)
return -1;
return sum;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
init();
scanf("%d%d",&n,&m);
for(int i=0;i<m;i++)
scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].val),edge[i].flog=0;
sort(edge,edge+m,cmp);
minn=0;
for(int i=0;i<m;i++)//找到最小生成树
{
int fx=find(edge[i].u);
int fy=find(edge[i].v);
if(fx!=fy)
{
pre[fx]=fy;
edge[i].flog=1;//标记这条边在最小生成树中已经用过
minn+=edge[i].val;
}
}
int flag=0;
for(int i=0;i<m;i++)
{
if(edge[i].flog)//每次排除一条边
{
init();
if(F(i)==minn)
{
flag=1;
break;
}
}
if(flag) break;
}
if(flag) printf("Yes\n");
else printf("No\n");
}
return 0;
}

nyoj--118--修路方案(次小生成树)的更多相关文章

  1. Nyoj 修路方案(次小生成树)

    描述 南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修路. 现在已经知道哪些城市之间可以修路,如果修路,花费是多少. 现在,军师小工已经找到 ...

  2. NYOJ 118 修路方案

    修路方案 时间限制:3000 ms  |  内存限制:65535 KB 难度:5   描述 南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修 ...

  3. nyoj 118 修路方案(最小生成树删边求多个最小生成树)

    修路方案 时间限制:3000 ms  |  内存限制:65535 KB 难度:5   描述 南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修 ...

  4. NYOJ 118 路方案(第二小的跨越)

    修路方案 时间限制:3000 ms  |  内存限制:65535 KB 难度:5 描写叙述 南将军率领着很多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N.因为交通不太便利,南将军准备修 ...

  5. hdu4081 秦始皇修路(次小生成树)

    题目ID:hdu4081   秦始皇修路 题目链接:点击打开链接 题目大意:给你若干个坐标,每个坐标表示一个城市,每个城市有若干个人,现在要修路,即建一个生成树,然后有一个魔法师可以免费造路(不消耗人 ...

  6. nyoj_118:修路方案(次小生成树)

    题目链接 题意,判断次小生成树与最小生成树的权值和是否相等. 豆丁文档-- A-star和第k短路和次小生成树和Yen和MPS寻路算法 法一: 先求一次最小生成树,将这棵树上的边加入一个向量中,再判断 ...

  7. 修路方案 Kruskal 之 次小生成树

    次小生成树 : Kruskal 是先求出来  最小生成树 , 并且记录下来所用到的的边 , 然后再求每次都 去掉最小生成树中的一个边 , 这样求最小生成树 , 然后看能不能得到 和原来最小生成树一样的 ...

  8. 修路方案(nyoj)

    算法:次小生成树 描述 南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修路. 现在已经知道哪些城市之间可以修路,如果修路,花费是多少. 现在 ...

  9. hdu4081 次小生成树变形

    pid=4081">http://acm.hdu.edu.cn/showproblem.php?pid=4081 Problem Description During the Warr ...

随机推荐

  1. VM虚拟机-Windows

    前提:安装了vm虚拟机 一.下载win10原版镜像文件 一定要是原版,修改版的不能用. 推荐下载网址:http://www.xitongtiandi.net/win10yuanban/ 下载后放在D盘 ...

  2. BZOJ 2324 (有上下界的)费用流

    思路: 先跑一遍Floyd  更新的时候map[i][j]=map[i][k]+map[k][j]  k需要小于i或j 正常建边: 把所有点 拆点-> i,i+n add(x,y,C,E)表示x ...

  3. winfrom窗体属性

  4. 推荐10个超棒的jQuery工具 提示插件

    脚本之家 http://www.jb51.net/article/28525.htm

  5. java控制台输入输出字符串

    一.实例说明 本实例通过输入流(System.in)实现从控制台接受用户输入信息,并将该信息输出到控制台. 运行效果如下图: 二.实现代码 三.要点说明 该实例的关键就是用到了System类的输入流, ...

  6. 3D集合图元:最小边界框/包围盒(boundingbox)

    对于2D边界框的应用时比较广泛地,它为一个简单匹配建立了很小的计算规则,3D模型的boundingbox则比较困难,计算代价较大.对于PCL库的使用则降低了计算难度,三维数值化降低了建模过程,可以使用 ...

  7. C# 解析 j s 三元运算符

    private void button1_Click(object sender, EventArgs e) { //转换 string str1 = "表达式1?表达式2:表达式3&quo ...

  8. 克隆CentOS 6.9 配置静态IP,重启网络服务时报错

    克隆的CentOS 6.9 第一次开机时,VMware workstation会为新虚拟机自动生成新mac地址,导致虚拟机配置文件中mac地址与虚拟机新mac地址不一致. 解决方法:1. 修改网卡配置 ...

  9. javaee 文件的写入

    package Shurushucu; import java.io.FileNotFoundException; import java.io.FileOutputStream; import ja ...

  10. Period UVA - 1328_结论题

    Code: #include<cstdio> #include<cstring> using namespace std; const int maxn=1000000+5; ...