Time Limit: 1 second

Memory Limit: 128 MB

【问题描述】

给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[2], …, A[2k - 1]的中位数。即前1,3,5,……个数的中位数。

【输入格式】

输入文件median.in的第1行为一个正整数N,表示了序列长度。 第2行包含N个非负整数A[i] (A[i] ≤ 10^9)。

【输出格式】

输出文件median.out包含(N + 1) / 2行,第i行为A[1], A[2], …, A[2i – 1]的中位数。

【数据规模】

对于20%的数据,N ≤ 100; 对于40%的数据,N ≤ 3000; 对于100%的数据,N ≤ 100000。

Sample Input1

7
1 3 5 7 9 11 6

Sample Output1

1
3
5 6 【题解】 维护一个大根堆和一个小根堆。 一开始把第一二元素加入到大根堆的第一个位置。然后直接输出第一个元素。 对于之后输入的元素。进行判断。如果大于大根堆的根,则放到小根堆。小于或等于则放到大根堆。 然后放完之后。进行一次判断。看一下这两个堆它们的差的绝对值是否会大于2.如果大于2的话。就把数字 多的那个堆中的根放到另外一个堆中。这样的判断也做完之后。就可以输出中位数了。比如当前i=3,则中 位数的位置就在2,先判断一下2是否等于大根堆的大小,如果是就输出大根堆的根,否则输出小根堆的根。 难点的话在堆的操作上。多熟悉就懂了。 【代码】
#include <cstdio>

int dagendui[100001],xiaogendui[100001],n,pos; //拼音分别对应了大根堆和小根堆 

void up_tiaozheng(int a[100001],int p,int what) //往上调整。 what对应了a堆是什么堆
{ //0为大根堆 1为小根堆
int x = a[p]; //获取需要调整的数字
int i = p,j = p/2; //往上调整 所以是除2表示指向其父亲节点
//printf("p=%d\n",p);
while (j > 0) //如果没有越过树的范围
{
if (what ==0) //大根堆 的调整方法
{
if (x > a[j]) //如果这个值比父亲节点大。那么就不符合大根堆的定义了。
{ //往上走
a[i] = a[j];
i = j;
j = i/2;
}
else //否则就找到了一个合适的位置 直接结束即可。
break;
}
else //小根堆
{
if (x <a[j]) //如果父亲节点比儿子节点大。则不符合小根堆的定义。
{ //同样进行调整
a[i] = a[j];
i = j;
j = i/2;
}
else //如果找到合适的位置就直接结束调整
break;
}
}
a[i] = x;
pos = i; //要记录这个数字最后放到了哪里。
} void down_tiaozheng(int a[100001],int p,int what) //往下调整。
{
int x = a[p]; //获取需要调整的数字。
int i = p,j = p*2;
while (j <=a[0] )
{
if (what ==0) //大根堆
{
if (j < a[0] && a[j+1] > a[j]) //大根堆往下调整的话,儿子要找大的。
j++;
if (x < a[j])
{
a[i] = a[j];
i = j;
j = i*2;
}
else
break;
}
else //小根堆
{
if (j < a[0] && a[j+1] < a[j]) //小根堆要调整则要找小的。
j++;
if (x > a[j])
{
a[i] = a[j];
i = j;
j = i*2;
}
else
break;
}
}
a[i] = x;
} void input_data()
{
scanf("%d",&n);
scanf("%d",&dagendui[1]); //先把第一个元素放到大根堆的根节点。
dagendui[0] = 1;
printf("%d\n",dagendui[1]);
for (int i = 2;i <= n;i++)
{
int dd;
scanf("%d",&dd);//输入的数据和大根堆的根节点比较
if (dd > dagendui[1]) //根据比较的结果放到大根堆或小根堆。
{
xiaogendui[0]++;
xiaogendui[xiaogendui[0]]=dd;
up_tiaozheng(xiaogendui,xiaogendui[0],1); //放到末尾要先向上调整再向下调整
down_tiaozheng(xiaogendui,pos,1);
}
else
{
dagendui[0]++;
dagendui[dagendui[0]] = dd;
up_tiaozheng(dagendui,dagendui[0],0);
down_tiaozheng(dagendui,pos,0); //同理
}
if (dagendui[0] > xiaogendui[0]) //如果它们的大小之差的绝对值大于2则需要调整
{
if ((dagendui[0] - xiaogendui[0]) > 2) //大根堆数字比较多
{ //就把大根堆的根节点放到小根堆中去
xiaogendui[0]++;
xiaogendui[xiaogendui[0]] = dagendui[1];
up_tiaozheng(xiaogendui,xiaogendui[0],1);
down_tiaozheng(xiaogendui,pos,1);
dagendui[1] = dagendui[dagendui[0]];
dagendui[0]--;
down_tiaozheng(dagendui,1,0);
}
}
else
if (dagendui[0] < xiaogendui[0])
{
if ((xiaogendui[0]-dagendui[0]) > 2)
{ //如果小根堆中的数字更多。则把小根堆的根节点放到大根堆中去。
dagendui[0]++;
dagendui[dagendui[0]] = xiaogendui[1];
up_tiaozheng(dagendui,dagendui[0],0);
down_tiaozheng(dagendui,pos,0);
xiaogendui[1] = xiaogendui[xiaogendui[0]];
xiaogendui[0]--;
down_tiaozheng(xiaogendui,1,1);
}
}
if ( (i%2)==1) //如果是奇数 则输出大根堆的根节点或小根堆的根节点。
{
int tt = (i+1)/2;
if (tt ==dagendui[0]) //大根堆的大小和所需要输出的第tt个数字相同就可以直接输出根节点
printf("%d\n",dagendui[1]);
else //否则的话就是放在小根堆的根节点了。
printf("%d\n",xiaogendui[1]);
}
} } int main()
{
//freopen("F:\\rush.txt","r",stdin);
input_data();
return 0;
}

【u119】中位数的更多相关文章

  1. [LeetCode] Find Median from Data Stream 找出数据流的中位数

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  2. [LeetCode] Median of Two Sorted Arrays 两个有序数组的中位数

    There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two ...

  3. BZOJ1303 [CQOI2009]中位数图

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  4. 在MySQL中,如何计算一组数据的中位数?

    要得到一组数据的中位数(例如某个地区或某家公司的收入中位数),我们首先要将这一任务细分为3个小任务: 将数据排序,并给每一行数据给出其在所有数据中的排名. 找出中位数的排名数字. 找出中间排名对应的值 ...

  5. AC日记——中位数 洛谷 P1168

    题目描述 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[2], …, A[2k - 1]的中位数.[color=red]即[/color] ...

  6. [2016湖南长沙培训Day4][前鬼后鬼的守护 chen] (动态开点线段树+中位数 or 动规 or 贪心+堆优化)

    题目大意 给定一个长度为n的正整数序列,令修改一个数的代价为修改前后两个数的绝对值之差,求用最小代价将序列转换为不减序列. 其中,n满足小于500000,序列中的正整数小于10^9 题解(引自mzx神 ...

  7. LeetCode 4 Median of Two Sorted Arrays 查找中位数,排除法,问题拓展 难度:1

    思路:设现在可用区间在nums1是[s1,t1),nums2:[s2,t2) 1.当一个数组可用区间为0的时候,由于另一个数组是已经排过序的,所以直接可得 当要取的是最小值或最大值时,也直接可得 2. ...

  8. BZOJ 1303 CQOI2009 中位数图 水题

    1303: [CQOI2009]中位数图 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2340  Solved: 1464[Submit][Statu ...

  9. 【算法之美】求解两个有序数组的中位数 — leetcode 4. Median of Two Sorted Arrays

    一道非常经典的题目,Median of Two Sorted Arrays.(PS:leetcode 我已经做了 190 道,欢迎围观全部题解 https://github.com/hanzichi/ ...

随机推荐

  1. Flask项目之手机端租房网站的实战开发(五)

    说明:该篇博客是博主一字一码编写的,实属不易,请尊重原创,谢谢大家! 接着上一篇博客继续往下写 :https://blog.csdn.net/qq_41782425/article/details/8 ...

  2. 【CS Round #46 (Div. 1.5) C】Set Subtraction

    [链接]h在这里写链接 [题意] 一开始有n个数字,然后有一个数字X,把每个数字都减去X,又生成N个新的数字. 然后把这2*N个数字混在一起. 告诉你这2*N个数字是什么.让你复原出原来的N个数字,以 ...

  3. 机器学习算法中怎样选取超參数:学习速率、正则项系数、minibatch size

    本文是<Neural networks and deep learning>概览 中第三章的一部分,讲机器学习算法中,怎样选取初始的超參数的值.(本文会不断补充) 学习速率(learnin ...

  4. 添加asp.net mvc到现有的asp.net web form 应用程序

    前言 asp.net mvc的前一版本为asp.net web Form(Asp.net mvc之前称为asp.net),其第一个版本与2002年年初发布.asp.net web form 属于.ne ...

  5. JS学习笔记 - cookie设置、读取、删除

    <script> // 设置cookie function setCookie(name, value, iDay) { var oDate = new Date(); oDate.set ...

  6. AndroidActivity跳转动画,让你的APP瞬间绚丽起来

    我们都知道绚丽的APP总会给用户耳目一新的感觉,为了抓住用户更大网络公司使出浑身解数让自己的产品更绚丽,而绚丽最简单的效果就是Activity跳转效果,不仅能够让用户看起来舒服,并且实现起来也特别简单 ...

  7. js中的$符号代表什么

    js中的$符号代表什么 一.总结 1.$:相当于document.getElementById(...) 2.$常用用法:每句话意思下面有,好东西 $("div p"); // ( ...

  8. 《JavaScript高级程序设计》笔记——第一章到第三章

    2019年,新年伊始,我打算好好重读一下<JavaScript高级程序设计>这本前端必备经典书.每天半小时. 以下内容摘自<JavaScript高级程序设计> 2019-2-1 ...

  9. POJ 1384 Piggy-Bank (ZOJ 2014 Piggy-Bank) 完全背包

    POJ :http://poj.org/problem?id=1384 ZOJ:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode ...

  10. POJ 3132 &amp; ZOJ 2822 Sum of Different Primes(dp)

    题目链接: POJ:id=3132">http://poj.org/problem?id=3132 ZOJ:http://acm.zju.edu.cn/onlinejudge/show ...