2014年百度之星程序设计大赛 - 初赛(第二轮)Chess
题目描述:小度和小良最近又迷上了下棋。棋盘一共有N行M列,我们可以把左上角的格子定为(1,1),右下角的格子定为(N,M)。在他们的规则中,“王”在棋盘上的走法遵循十字路线。也就是说,如果“王”当前在(x,y)点,小度在下一步可以移动到(x+1, y), (x-1, y), (x, y+1), (x, y-1), (x+2, y), (x-2, y), (x, y+2), (x, y-2) 这八个点中的任意一个。
小度觉得每次都是小良赢,没意思。为了难倒小良,他想出了这样一个问题:如果一开始“王”在(x0,y0)点,小良对“王”连续移动恰好K步,一共可以有多少种不同的移动方案?两种方案相同,当且仅当它们的K次移动全部都是一样的。也就是说,先向左再向右移动,和先向右再向左移动被认为是不同的方案。
输入:输入包括多组数据。输入数据的第一行是一个整数T(T≤10),表示测试数据的组数。每组测试数据只包括一行,为五个整数N,M,K,x0,y0。(1≤N,M,K≤1000,1≤x0≤N,1≤y0≤M)
输出:对于第k组数据,第一行输出Case #k:,第二行输出所求的方案数。由于答案可能非常大,你只需要输出结果对9999991取模之后的值即可。
这个题目,开始做的时候挺纠结,最直接的思路就是从王的起始点一步一步的计算到达其它位置的方案数,不过复杂度太高,会超时,下面先说下自己开始的思路,然后通过这个思路改进来解决这道题目。定义一个数组dp[x][i][j](0<=x<=k,1<=i<=n,1<=j<=m),表示经过x步到达位置(i,j)的方案数,move[8][2] = {{1,0},{-1,0},{0,1},{0,-1},{2,0},{-2,0},{0,2},{0,-2}},那么dp[x+1][i][j] = sumo(dp[x][i - move[o][0]][j - move[o][1]])(0<=o<8),sumo表示以o变化来累加,最终只要将dp[k][i][j](1<=i<=n,1<=j<=m)都加就是总的方案数了。但由于k,n,m的最大值都为1000,所以直接定义dp[1001][1001][1001]占用的存储空间过大,再看前面的推导式子dp[x+1][i][j]只与dp[x][i'][j']有关,所以可以定义滚动数组dp[2][1001][1001]来节约空间。可以很容易的看出这个思路的复杂度是O(k*n*m),显然这个复杂度不能满足题目要求。
可不可以根据上面思路优化下呢,最终我们需要计算dp[k][i][j](1<=i<=n,1<=j<=m)的和,前面的思路是一步一步经过k步来推导出dp[k][i][j],可以不可以用起来的方法求dp[k][i][j]呢?考虑到这是一个矩阵,移动的方向只能是行或者列,所有很自然想到行列步数的组合来求dp[k][i][j],即dp[k][i][j] = sumt(C[k][t] * dp1[t][i] * dp2[k - t][j]),dp1[t][i]表示在列方向经过t步到达i,dp2[k - t][j]表示在行方向经过k - t步到达j,C[k][t]是组合数。计算dp1和dp2可以通过前面一步一步推的思路求解,只是维度变成一维的了,复杂度分别为O(k * n), O(k * m)。求最终结果也是将所有dp[k][i][j](1<=i<=n,1<=j<=m)加起来,这个计算式和前面不同的是由于行列式独立的,所以最终的ans = sumi(sumj(sumt(C[k][t] * dp1[t][i] * dp2[k - t][j]))) = sumt(C[k][t] * sumi(dp1[t][i]) * sumj(dp2[k - t][j])),C[k][t]可以根据组合数的性质C[k][t] = C[k - 1][t] + C[k - 1][t - 1]求得,所以这个思路的算法复杂度为O(max( k * n, k * m, k^2)),可以满足题目要求了。
具体代码如下:
#include <iostream>
#include <cstring>
using namespace std; int n, m, k, x0, y0;
long long dp1[][], dp2[][], c[][];
int move[] = {, -, , -}; void dp(long long dp[][], int start, int end, int x)
{
dp[][x] = ;
for (int i = ; i < k; i++)
{
for (int j = start; j <= end; j++)
if (dp[i][j])
{
for (int k = ; k < ; k++)
{
int ii = j + move[k];
if (ii >= start && ii <= end)
dp[i + ][ii] = (dp[i + ][ii] + dp[i][j]) % ;
}
}
}
}
void pl()
{
for (int i = ; i < ; i++)
c[i][] = ;
for (int i = ; i < ; i++)
for (int j = ; j <= i ; j++)
c[i][j] = (c[i - ][j - ] + c[i - ][j]) % ;
} int main()
{
int t;
int ans;
pl();
cin >> t;
for (int i = ; i <= t; i++)
{
cin >> n >> m >> k >> x0 >> y0; memset(dp1, , sizeof(dp1));
memset(dp2, , sizeof(dp2));
dp(dp1, , n, x0);
dp(dp2, , m, y0);
ans = ;
for (int j = ; j <= k; j++)
{
for (int ii = ; ii <= n; ii++)
dp1[j][] = (dp1[j][] + dp1[j][ii]) % ;
for (int ii = ; ii <= m; ii++)
dp2[j][] = (dp2[j][] + dp2[j][ii] ) % ;
}
for (int j = ; j <= k; j++)
ans = (ans + (((c[k][j] * dp1[j][]) % ) * dp2[k - j][]) % ) % ;
cout << "Case #" << i << ":" << endl << ans << endl;
}
return ;
}
2014年百度之星程序设计大赛 - 初赛(第二轮)Chess的更多相关文章
- 2014年百度之星程序设计大赛 - 初赛(第二轮)JZP Set
题目描述:一个{1, ..., n}的子集S被称为JZP集,当且仅当对于任意S中的两个数x,y,若(x+y)/2为整数,那么(x+y)/2也属于S.例如,n=3,S={1,3}不是JZP集,因为(1+ ...
- HDU 4834 JZP Set(数论+递推)(2014年百度之星程序设计大赛 - 初赛(第二轮))
Problem Description 一个{1, ..., n}的子集S被称为JZP集,当且仅当对于任意S中的两个数x,y,若(x+y)/2为整数,那么(x+y)/2也属于S.例如,n=3,S={1 ...
- HDU 4833 Best Financing(DP)(2014年百度之星程序设计大赛 - 初赛(第二轮))
Problem Description 小A想通过合理投资银行理财产品达到收益最大化.已知小A在未来一段时间中的收入情况,描述为两个长度为n的整数数组dates和earnings,表示在第dates[ ...
- HDU 4832 Chess(DP+组合数学)(2014年百度之星程序设计大赛 - 初赛(第二轮))
Problem Description 小度和小良最近又迷上了下棋.棋盘一共有N行M列,我们可以把左上角的格子定为(1,1),右下角的格子定为(N,M).在他们的规则中,“王”在棋盘上的走法遵循十字路 ...
- 2014年百度之星程序设计大赛 - 初赛(第一轮) hdu Grids (卡特兰数 大数除法取余 扩展gcd)
题目链接 分析:打表以后就能发现时卡特兰数, 但是有除法取余. f[i] = f[i-1]*(4*i - 2)/(i+1); 看了一下网上的题解,照着题解写了下面的代码,不过还是不明白,为什么用扩展g ...
- 2014年百度之星程序设计大赛 - 资格赛 第二题 Disk Schedule
双调欧几里得旅行商问题是一个经典动态规划问题.<算法导论(第二版)>思考题15-1和北京大学OJ2677都出现了这个题目. 旅行商问题描写叙述:平面上n个点,确定一条连接各点的最短闭合旅程 ...
- HDU6383 2018 “百度之星”程序设计大赛 - 初赛(B) 1004-p1m2 (二分)
原题地址 p1m2 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total ...
- HDU6380 2018 “百度之星”程序设计大赛 - 初赛(B) A-degree (无环图=树)
原题地址 degree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Tot ...
- HDU 6118 度度熊的交易计划 【最小费用最大流】 (2017"百度之星"程序设计大赛 - 初赛(B))
度度熊的交易计划 Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
随机推荐
- 利用浏览器LocalStorage缓存图片,视频文件
文章路径:https://hacks.mozilla.org/2012/02/saving-images-and-files-in-localstorage/
- 最小生成树 prime poj1258
题意:给你一个矩阵M[i][j]表示i到j的距离 求最小生成树 思路:裸最小生成树 prime就可以了 最小生成树专题 AC代码: #include "iostream" #inc ...
- css 清除浮动 clear
.clearfix{ zoom:1;/*对于老版本的IE进行兼容的设置*/ } .clearfix:after{ content:""; display:block; visibi ...
- 利用sqlmap进行mysql提权的小方法(win与liunx通用)
文章作者:pt007@vip.sina.com文章来源:https://www.t00ls.net/thread-36196-1-1.html1.连接mysql数据打开一个交互shell:sqlmap ...
- java学习中的一些疑惑解答
一.java中的枚举类型: 在实际编程中,往往存在着这样的"数据集",它们的数值在程序中是稳定的,而且"数据集"中的元素是有限的.例如星期一到星期日七个数据元素 ...
- ASP.NET中基本语言特性
自动属性 public string Name { get; set; } 对象与集合的初始化 //自动推断类型//集合的初始化 var Products=new List<Product> ...
- 系统定位在iOS8中的改变
CLLocationManager这个系统定位的类在iOS8之前要实现定位,只需要遵守CLLocationManagerDelegate这个代理即可: - (void)startLocate { ...
- Opencv算法学习二
1.直方图:图片中像素值分布情况的坐标图. 直方图均衡化:按一定规律拉伸像素值,提高像素值少的点,增加原图的对比度,使人感觉更清晰的函数. equalizeHist( src, dst ); 2.ha ...
- int (*p)[10] 与*p[10]的区别
定义指向具有10个整型元素的一维数组的指针格式为:int (*p)[10] ,而起初我一直以为int (*p)[10] 是定义二维数组的方法 ][],(*p)[]; p=a; /*有了这个定义后,指针 ...
- Lisk沙箱漏洞分析及解决方案
背景 比特股的创始人Daniel Larimer质疑了lisk系统中的一系列问题,绝大多数都被lisk的创始人之一Max正面回应过了,具体可以看看这个http://ethereum.stackexch ...