2014年百度之星程序设计大赛 - 初赛(第二轮)Chess
题目描述:小度和小良最近又迷上了下棋。棋盘一共有N行M列,我们可以把左上角的格子定为(1,1),右下角的格子定为(N,M)。在他们的规则中,“王”在棋盘上的走法遵循十字路线。也就是说,如果“王”当前在(x,y)点,小度在下一步可以移动到(x+1, y), (x-1, y), (x, y+1), (x, y-1), (x+2, y), (x-2, y), (x, y+2), (x, y-2) 这八个点中的任意一个。
小度觉得每次都是小良赢,没意思。为了难倒小良,他想出了这样一个问题:如果一开始“王”在(x0,y0)点,小良对“王”连续移动恰好K步,一共可以有多少种不同的移动方案?两种方案相同,当且仅当它们的K次移动全部都是一样的。也就是说,先向左再向右移动,和先向右再向左移动被认为是不同的方案。
输入:输入包括多组数据。输入数据的第一行是一个整数T(T≤10),表示测试数据的组数。每组测试数据只包括一行,为五个整数N,M,K,x0,y0。(1≤N,M,K≤1000,1≤x0≤N,1≤y0≤M)
输出:对于第k组数据,第一行输出Case #k:,第二行输出所求的方案数。由于答案可能非常大,你只需要输出结果对9999991取模之后的值即可。
这个题目,开始做的时候挺纠结,最直接的思路就是从王的起始点一步一步的计算到达其它位置的方案数,不过复杂度太高,会超时,下面先说下自己开始的思路,然后通过这个思路改进来解决这道题目。定义一个数组dp[x][i][j](0<=x<=k,1<=i<=n,1<=j<=m),表示经过x步到达位置(i,j)的方案数,move[8][2] = {{1,0},{-1,0},{0,1},{0,-1},{2,0},{-2,0},{0,2},{0,-2}},那么dp[x+1][i][j] = sumo(dp[x][i - move[o][0]][j - move[o][1]])(0<=o<8),sumo表示以o变化来累加,最终只要将dp[k][i][j](1<=i<=n,1<=j<=m)都加就是总的方案数了。但由于k,n,m的最大值都为1000,所以直接定义dp[1001][1001][1001]占用的存储空间过大,再看前面的推导式子dp[x+1][i][j]只与dp[x][i'][j']有关,所以可以定义滚动数组dp[2][1001][1001]来节约空间。可以很容易的看出这个思路的复杂度是O(k*n*m),显然这个复杂度不能满足题目要求。
可不可以根据上面思路优化下呢,最终我们需要计算dp[k][i][j](1<=i<=n,1<=j<=m)的和,前面的思路是一步一步经过k步来推导出dp[k][i][j],可以不可以用起来的方法求dp[k][i][j]呢?考虑到这是一个矩阵,移动的方向只能是行或者列,所有很自然想到行列步数的组合来求dp[k][i][j],即dp[k][i][j] = sumt(C[k][t] * dp1[t][i] * dp2[k - t][j]),dp1[t][i]表示在列方向经过t步到达i,dp2[k - t][j]表示在行方向经过k - t步到达j,C[k][t]是组合数。计算dp1和dp2可以通过前面一步一步推的思路求解,只是维度变成一维的了,复杂度分别为O(k * n), O(k * m)。求最终结果也是将所有dp[k][i][j](1<=i<=n,1<=j<=m)加起来,这个计算式和前面不同的是由于行列式独立的,所以最终的ans = sumi(sumj(sumt(C[k][t] * dp1[t][i] * dp2[k - t][j]))) = sumt(C[k][t] * sumi(dp1[t][i]) * sumj(dp2[k - t][j])),C[k][t]可以根据组合数的性质C[k][t] = C[k - 1][t] + C[k - 1][t - 1]求得,所以这个思路的算法复杂度为O(max( k * n, k * m, k^2)),可以满足题目要求了。
具体代码如下:
#include <iostream>
#include <cstring>
using namespace std; int n, m, k, x0, y0;
long long dp1[][], dp2[][], c[][];
int move[] = {, -, , -}; void dp(long long dp[][], int start, int end, int x)
{
dp[][x] = ;
for (int i = ; i < k; i++)
{
for (int j = start; j <= end; j++)
if (dp[i][j])
{
for (int k = ; k < ; k++)
{
int ii = j + move[k];
if (ii >= start && ii <= end)
dp[i + ][ii] = (dp[i + ][ii] + dp[i][j]) % ;
}
}
}
}
void pl()
{
for (int i = ; i < ; i++)
c[i][] = ;
for (int i = ; i < ; i++)
for (int j = ; j <= i ; j++)
c[i][j] = (c[i - ][j - ] + c[i - ][j]) % ;
} int main()
{
int t;
int ans;
pl();
cin >> t;
for (int i = ; i <= t; i++)
{
cin >> n >> m >> k >> x0 >> y0; memset(dp1, , sizeof(dp1));
memset(dp2, , sizeof(dp2));
dp(dp1, , n, x0);
dp(dp2, , m, y0);
ans = ;
for (int j = ; j <= k; j++)
{
for (int ii = ; ii <= n; ii++)
dp1[j][] = (dp1[j][] + dp1[j][ii]) % ;
for (int ii = ; ii <= m; ii++)
dp2[j][] = (dp2[j][] + dp2[j][ii] ) % ;
}
for (int j = ; j <= k; j++)
ans = (ans + (((c[k][j] * dp1[j][]) % ) * dp2[k - j][]) % ) % ;
cout << "Case #" << i << ":" << endl << ans << endl;
}
return ;
}
2014年百度之星程序设计大赛 - 初赛(第二轮)Chess的更多相关文章
- 2014年百度之星程序设计大赛 - 初赛(第二轮)JZP Set
题目描述:一个{1, ..., n}的子集S被称为JZP集,当且仅当对于任意S中的两个数x,y,若(x+y)/2为整数,那么(x+y)/2也属于S.例如,n=3,S={1,3}不是JZP集,因为(1+ ...
- HDU 4834 JZP Set(数论+递推)(2014年百度之星程序设计大赛 - 初赛(第二轮))
Problem Description 一个{1, ..., n}的子集S被称为JZP集,当且仅当对于任意S中的两个数x,y,若(x+y)/2为整数,那么(x+y)/2也属于S.例如,n=3,S={1 ...
- HDU 4833 Best Financing(DP)(2014年百度之星程序设计大赛 - 初赛(第二轮))
Problem Description 小A想通过合理投资银行理财产品达到收益最大化.已知小A在未来一段时间中的收入情况,描述为两个长度为n的整数数组dates和earnings,表示在第dates[ ...
- HDU 4832 Chess(DP+组合数学)(2014年百度之星程序设计大赛 - 初赛(第二轮))
Problem Description 小度和小良最近又迷上了下棋.棋盘一共有N行M列,我们可以把左上角的格子定为(1,1),右下角的格子定为(N,M).在他们的规则中,“王”在棋盘上的走法遵循十字路 ...
- 2014年百度之星程序设计大赛 - 初赛(第一轮) hdu Grids (卡特兰数 大数除法取余 扩展gcd)
题目链接 分析:打表以后就能发现时卡特兰数, 但是有除法取余. f[i] = f[i-1]*(4*i - 2)/(i+1); 看了一下网上的题解,照着题解写了下面的代码,不过还是不明白,为什么用扩展g ...
- 2014年百度之星程序设计大赛 - 资格赛 第二题 Disk Schedule
双调欧几里得旅行商问题是一个经典动态规划问题.<算法导论(第二版)>思考题15-1和北京大学OJ2677都出现了这个题目. 旅行商问题描写叙述:平面上n个点,确定一条连接各点的最短闭合旅程 ...
- HDU6383 2018 “百度之星”程序设计大赛 - 初赛(B) 1004-p1m2 (二分)
原题地址 p1m2 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total ...
- HDU6380 2018 “百度之星”程序设计大赛 - 初赛(B) A-degree (无环图=树)
原题地址 degree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Tot ...
- HDU 6118 度度熊的交易计划 【最小费用最大流】 (2017"百度之星"程序设计大赛 - 初赛(B))
度度熊的交易计划 Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
随机推荐
- linux(debian) arm-linux-g++ v4.5.1交叉编译 embedded arm 版本的QtWebkit (browser) 使用qt 4.8.6 版本
最近需要做一个项目 在arm 架构的linux下 没有桌面环境的情况下拉起 有界面的浏览器使用. 考虑用qt 的界面和 qtwebikt 的库去实现这一系列操作. 本文参考: Qt移植到ARM Lin ...
- swfupload纠结bug总结
上传控件传到客户端的信息在IE7下乱码: 服务端 HttpUtility.UrlEncode,客户端 decodeURIComponent 上传大文件报404错: 用fiddler截取发现提示: 最可 ...
- nfs配置注意点
#ip与括号之间不能有空格,不加rw参数时挂载的目录是只读的 /eqp/export/ 10.10.30.0/24(rw,sync,no_root_squash) #更改目录所属的组和所属的用户(nf ...
- 关于mySQL自连接的一些用法
自连接是连接的一种用法,但并不是连接的一种类型,因为他的本质是把一张表当成两张表来使用. 举例说明: 这是一张职员信息表,如果我要查询这张表中的每个职员的上司,那么必须使用自连接来查询.所以为了能实现 ...
- WIM镜像添加多语言支持
起初的想法: intel 600p虽然速度一般,但pcie还是值得一试的.购买后发现原来的win7版本无法识别就找了KB2990941和KB3087873两个补丁,成功识别出了硬盘.期间通过dezor ...
- input框focus时的美化效果
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Xcode 调试技巧
一 NSLog调试 官方文档:Logs an error message to the Apple System Log facility. 即NSLog不是作为普通的debug log的,而是err ...
- centos中yum安装mysql路径
1. 使用命令service mysqld stop 停止mysql 查看mysql数据库的默认路径:/var/lib/mysql 使用cp -afir /var/lib/mysql/* /us ...
- js判断只能输入数字和只能输入
JS判断只能是数字和小数点 1.文本框只能输入数字代码(小数点也不能输入) <input onkeyup="this.value=this.value.replace(/\D/g,'' ...
- APK瘦身记,如何实现高达53%的压缩效果
作者:非戈@阿里移动安全 1.我是怎么思考这件事情的 APK是Android系统安装包的文件格式,关于这个话题其实是一个老生常谈的题目,不论是公司内部,还是外部网络,前人前辈已经总结出很多方法和规律. ...