Time Limit: 15 Sec  Memory Limit: 162 MB
Submit: 907  Solved: 587
[Submit][Status][Discuss]

Description

某加工厂有A、B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成。由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工,所完成任务又会不同。某一天,加工厂接到n个产品加工的任务,每个任务的工作量不尽一样。你的任务就是:已知每个任务在A机器上加工所需的时间t1, B机器上加工所需的时间t2及由两台机器共同加工所需的时间t3,请你合理安排任务的调度顺序,使完成所有n个任务的总时间最少。

Input

输入共n+1行第1行为 n。 n是任务总数(1≤n≤6000)第i+1行为3个[0,5]之间的非负整数t1,t2,t3,分别表示第i个任务在A机器上加工、B机器上加工、两台机器共同加工所需要的时间。如果所给的时间t1或t2为0表示任务不能在该台机器上加工,如果t3为0表示任务不能同时由两台机器加工。

Output

最少完成时间

Sample Input

5
2 1 0
0 5 0
2 4 1
0 0 3
2 1 1

Sample Output

9

HINT

 

Source

一道非常妙的dp

刚开始确实一点思路都没有,本来想的是$f[i][3]$分别表示用A,B,C完成的最早时间,但是很明显转移的时候会出错

正解用了非常神奇的一种dp方法

考虑到只有两种机器

$f[i]$表示的是当完成当前所有任务且A机器用了$i$时间时,B机器用的最小的时间

也就是我们可以去枚举A机器完成任务的时间

这样的话,对于一个物品来说,

如果是被$B$完成,那么$f[i]+=timeB$

如果是被$A$完成,那么$f[i]=min(f[i-timeA],f[i]$

如果是被$C$完成,那么$f[i]=min(f[i-timeC]+C,f[i]$

这样最后使得最大值最小就可以了

#include<cstring>
#include<cstdio>
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
#define min(a,b) (a<b?a:b)
#define max(a,b) (a<b?b:a)
char buf[<<],*p1=buf,*p2=buf;
//#define int long long
using namespace std;
const int MAXN=*,INF=1e9+;
inline int read() {
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int f[MAXN];
int main() {
#ifdef WIN32
freopen("a.in","r",stdin);
#endif
memset(f,0xf,sizeof(f));
f[]=;
int N=read(),limit=;
for(register int i=;i<=N;i++) {
int A=read(),B=read(),C=read();
A = A==?INF:A;
B = B==?INF:B;
C = C==?INF:C;
limit+=min(A,min(B,C));
for(register int j=limit;j>=;j--) {
B==INF?f[j]=B:f[j]+=B;
if(j>=A) f[j]=min(f[j-A],f[j]);
if(j>=C) f[j]=min(f[j-C]+C,f[j]);
}
}
int ans=INF;
for(int i=;i<=limit;i++) ans=min(ans,max(i,f[i]));
printf("%d",ans);
return ;
}

BZOJ1222: [HNOI2001]产品加工(诡异背包dp)的更多相关文章

  1. BZOJ1222 [HNOI2001]产品加工 - 动态规划- 背包

    题解 怎么看都不像是个背包,直到我看了题解→_→, 第一次碰到这么奇怪的背包= = 定一个滚动数组$F_i$, $i$表示机器$a$用了$i$的时间, $F_i$表示机器$b$用了$F_i$的时间, ...

  2. [luoguP2224] [HNOI2001]产品加工(背包DP)

    传送门 f[i][j]表示第一个机器耗时j,第二个机器耗时f[i][j] 第一维可以滚掉 #include <cstdio> #include <cstring> #inclu ...

  3. BZOJ1222[HNOI2001]产品加工——DP

    题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工 ...

  4. bzoj1222: [HNOI2001]产品加工--DP

    DP神题orz dp[i]表示机器1工作i小时,机器2工作dp[i]小时 那么对于每个任务: 选1:dp[i]=dp[i-a]; 选2:dp[i]=dp[i]+b; 选1+2:dp[i]=dp[i-c ...

  5. [HNOI2001] 求正整数 - 背包dp,数论

    对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m. Solution (乍一看很简单却搞了好久?我真是太菜了) 根据因子个数计算公式 若 \(m = \prod p_i^{q_i}\) ...

  6. bzoj1222: [HNOI2001]产品加工

    注意时间都是 <= 5的.. #include<cstdio> #include<cstring> #include<cstdlib> #include< ...

  7. 【bzoj1222】[HNOI2001]产品加工 背包dp

    题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工 ...

  8. 【BZOJ1222】[HNOI2001]产品加工 DP

    [BZOJ1222][HNOI2001]产品加工 Description 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同 ...

  9. bzoj 1222: [HNOI2001]产品加工 dp

    1222: [HNOI2001]产品加工 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 381  Solved: 218[Submit][Status ...

随机推荐

  1. javaee IO流复制的方法

    package Zjshuchu; import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.FileN ...

  2. 15.5.1【Task实现细节】 生成的代码

    还在吗?我们开始吧.由于深入讲解需上百页的篇幅,因此这里我不会讲得太深.但我会提 供足够的背景知识,以有助于你对整个结构的理解.之后可通过阅读我近些年来撰写的博客文章, 来了解更加错综复杂的细节,或简 ...

  3. UOJ #310 黎明前的巧克力 (FWT)

    题目传送门 题目大意:给你一个序列,定义一个子序列的权值表示子序列中元素的异或和,现在让你选出两个互不相交的子序列,求选出的这两个子序列权值相等的方案数,$n,a_{i}\leq 10^{6}$ 这是 ...

  4. CentOS安装新版RabbitMQ解决Erlang 19.3版本依赖

    通过yum等软件仓库都可以直接安装RabbitMQ,但版本一般都较为保守. RabbitMQ官网提供了新版的rpm包(http://www.rabbitmq.com/download.html),但是 ...

  5. javascript中创建新节点的方法 标签: javascript 2016-12-25 11:38 55人阅读 评论(0)

    一. var newnode=document.createElement("i"); var newnodeText=document.createTextNode(" ...

  6. kissui.scrollanim页面滚动动画库插件

    简介 kissui.scrollanim是一款实用的纯JS和CSS3页面滚动动画库插件.通过该插件可以使元素进入浏览器视口的时候,展示指定的CSS3动画效果. 下载地址及演示 在线演示 在线下载 安装 ...

  7. Golang - 并发编程

    目录 Golang - 并发编程 1. 并行和并发 2. go语言并发优势 3. goroutine是什么 4. 创建goroutine 5. runtime包 6. channel是什么 7. ch ...

  8. (11)Spring Boot配置ContextPath【从零开始学Spring Boot】

    Spring boot默认是/ ,这样直接通过http://ip:port/就可以访问到index页面,如果要修改为http://ip:port/path/ 访问的话,那么需要在Application ...

  9. 设置Jmeter默认中文页面

    下载安装好Jmeter后默认的是英文,对于我这种学渣来说简直就是受到了1000000点攻击. 所以,如何把英文界面换成中文呢? 方法一(从网上看到的) 启动Jmeter找到 options >c ...

  10. 0726xtrbackup实例详解

    转自http://www.cnblogs.com/olinux/p/5207887.html MySQL中的xtrabackup的原理解析 xtrabackup的官方下载地址为 http://www. ...