[题目链接]

https://www.lydsy.com/JudgeOnline/problem.php?id=1833

[算法]

数位DP

[代码]

#include <algorithm>
#include <bitset>
#include <cctype>
#include <cerrno>
#include <clocale>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <exception>
#include <fstream>
#include <functional>
#include <limits>
#include <list>
#include <map>
#include <iomanip>
#include <ios>
#include <iosfwd>
#include <iostream>
#include <istream>
#include <ostream>
#include <queue>
#include <set>
#include <sstream>
#include <stdexcept>
#include <streambuf>
#include <string>
#include <utility>
#include <vector>
#include <cwchar>
#include <cwctype>
#include <stack>
#include <limits.h>
using namespace std; int i;
long long a,b;
long long f[][][]; inline void dp(long long m)
{
long long i,j,k,x;
memset(f,,sizeof(f));
f[][][] = ;
for (i = ; i <= ; i++)
{
for (j = ; j <= ; j++)
{
for (k = ; k <= i; k++)
{
if (j != m)
{
for (x = ; x <= ; x++)
f[i][j][k] += f[i - ][x][k];
} else if (k >= )
{
for (x = ; x <= ; x++)
f[i][j][k] += f[i - ][x][k - ];
}
}
}
}
}
inline long long calc(long long x,long long t)
{
long long i,j,k,len = ;
long long res = ;
long long cnt = ;
long long a[];
memset(a,,sizeof(a));
while (x != )
{
a[++len] = x % ;
x /= ;
}
reverse(a + ,a + len + );
for (i = ; i <= len; i++)
{
for (j = ; j <= ; j++)
{
for (k = ; k <= len - i + ; k++)
res += f[len - i + ][j][k] * k;
}
}
for (i = ; i <= len; i++)
{
for (j = ; j < a[i]; j++)
{
if (i == && !j) continue;
for (k = cnt; k <= len; k++)
{
res += f[len - i + ][j][k - cnt] * k;
}
}
if (a[i] == t) cnt++;
}
return res;
} int main()
{ while (scanf("%lld%lld",&a,&b) && (a || b))
{
if (a > b) swap(a,b);
for (i = ; i < ; i++)
{
dp(i);
printf("%lld ",calc(b + ,i) - calc(a,i));
}
dp();
printf("%lld\n",calc(b + ,) - calc(a,));
} return ; }

[ZJOI 2010] 数字计数的更多相关文章

  1. [ZJOI 2010] 排列计数

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=2111 [算法] 一种比较好的理解方式是将该序列看成是一棵堆式存储的二叉树 那么问题转 ...

  2. 【BZOJ-1833】count数字计数 数位DP

    1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 2494  Solved: 1101[Submit][ ...

  3. [BZOJ1833][ZJOI2010]count 数字计数

    [BZOJ1833][ZJOI2010]count 数字计数 试题描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入 输入文件中仅包含一行两个整数a ...

  4. BZOJ_1833_[ZJOI2010]_数字计数_(数位dp)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1833 统计\(a~b\)中数字\(0,1,2,...,9\)分别出现了多少次. 分析 数位dp ...

  5. BZOJ 1833: [ZJOI2010]count 数字计数( dp )

    dp(i, j, k)表示共i位, 最高位是j, 数字k出现次数. 预处理出来. 差分答案, 对于0~x的答案, 从低位到高位进行讨论 -------------------------------- ...

  6. 1833: [ZJOI2010]count 数字计数

    1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 2951  Solved: 1307[Submit][ ...

  7. BZOJ_1833_[ZJOI2010]count 数字计数_数位DP

    BZOJ_1833_[ZJOI2010]count 数字计数_数位DP 题意: 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 分析: 数位DP f[i][ ...

  8. UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)

    题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...

  9. 【洛谷】2602: [ZJOI2010]数字计数【数位DP】

    P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入输出格式 输入格式: 输入文件中仅包含一行两个整数a ...

随机推荐

  1. MyEclipse创建SSH项目(Java web由maven管理)

    JavaEE后台开发,MyEclipse创建SSH项目,MyEclipse创建Java web 由maven管理的SSH项目. Demo工程源码github地址 1.创建SSH项目 1.创建web工程 ...

  2. Go中的main函数和init函数

    Go里面有两个保留的函数:init函数(能够应用于所有的package)和main函数(只能应用于package main).这两个函数在定义时不能有任何的参数和返回值.虽然一个package里面可以 ...

  3. Java_Web之分层架构

    当我们把业务处理的代码与JSP代码混在一起,不易于阅读,不易于代码维护,这就需要分层. 分层模式 1.分层模式是最常见的一种架构模式 2.分层模式是很多架构模式的基础 分层 将解决方案的组件分隔到不同 ...

  4. MyEclipse 连接Oracle数据库(初学者必看)

    前言:刚接触Oracle数据库,便有一个需求,编写控制台程序,实现主人登录.数据库为Oracle.下面详细介绍一下MyEclipse 连接Oracle数据库.   package DbHelp; im ...

  5. 08--MOOC--C/C++ 根据年月日计算星期几

    计算任何一天是星期几的几种算法 一:常用公式 W = [Y-1] + [(Y-1)/4] - [(Y-1)/100] + [(Y-1)/400] + D Y是年份数,D是这一天在这一年中的累积天数,也 ...

  6. JSP_内置对象_response

    response对象: response对象包含了相应客户请求的有关信息,但在JSP中很少直接用到它,它是HttpServletResponse类的实例.response对象具有页面作用域,即访问一个 ...

  7. 题解 P2605 【[ZJOI2010]基站选址】(From luoguBlog)

    线段树优化dp 数组f[i][j]表示在前i个村庄内,第j个基站建在i处的最小费用 根据交线牛逼法和王鹤松式可得方程 f[i][j]=min(f[k][j−1]+cost(k,i)) cost(k,i ...

  8. 图的BFS

    目录: 一.算法的基本思路 二.算法过程 三.题目:785判断是否为二分图 https://blog.csdn.net/weixin_40953222/article/details/80544928 ...

  9. typora与Markdown的一些小问题

    一.typora中修改图像大小 加上style="zoom:50%" <img src="E:\GitHub_learn\blog\source\imgs\tree ...

  10. Vue解决跨域之反向代理

    目录 : config/index.js module.exports = { dev: { // Paths assetsSubDirectory: 'static', assetsPublicPa ...