Cryptography

Time Limit: 5000ms
Memory Limit: 32768KB

This problem will be judged on ZJU. Original ID: 2671
64-bit integer IO format: %lld      Java class name: Main

 

Young cryptoanalyst Georgie is planning to break the new cipher invented by his friend Andie. To do this, he must make some linear transformations over the ring Zr = Z/rZ.

Each linear transformation is defined by 2×2 matrix. Georgie has a sequence of matrices A1 , A2 ,..., An . As a step of his algorithm he must take some segment Ai , Ai+1 , ..., Aj of the sequence and multiply some vector by a product Pi,j=Ai × Ai+1 × ... × Aj of the segment. He must do it for m various segments.

Help Georgie to determine the products he needs.

Input

There are several test cases in the input. The first line of each case contains r (1 <= r <= 10,000), n (1 <= n <= 30,000) and m (1 <= m <= 30,000). Next n blocks of two lines, containing two integer numbers ranging from 0 to r - 1 each, describe matrices. Blocks are separated with blank lines. They are followed by m pairs of integer numbers ranging from1 to n each that describe segments, products for which are to be calculated.
There is an empty line between cases.

Output

Print m blocks containing two lines each. Each line should contain two integer numbers ranging from 0 to r - 1 and define the corresponding product matrix.
There should be an empty line between cases.

Separate blocks with an empty line.

Sample

Input

3 4 4
0 1
0 0 2 1
1 2 0 0
0 2 1 0
0 2 1 4
2 3
1 3
2 2 Output
0 2
0 0 0 2
0 1 0 1
0 0 2 1
1 2

Source

 
解题:坑爹的线段树
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <vector>
#include <queue>
#include <cstdlib>
#include <string>
#include <set>
#include <stack>
#define LL long long
#define pii pair<int,int>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = ;
struct Matrix {
int m[][];
};
struct node {
int lt,rt;
Matrix matrix;
};
node tree[maxn<<];
int r,n,m;
Matrix Multiplication(const Matrix &a,const Matrix &b) {
Matrix c;
c.m[][] = (a.m[][]*b.m[][] + a.m[][]*b.m[][])%r;
c.m[][] = (a.m[][]*b.m[][] + a.m[][]*b.m[][])%r;
c.m[][] = (a.m[][]*b.m[][] + a.m[][]*b.m[][])%r;
c.m[][] = (a.m[][]*b.m[][] + a.m[][]*b.m[][])%r;
return c;
}
void read(Matrix &c) {
for(int i = ; i < ; ++i)
for(int j = ; j < ; ++j)
scanf("%d",&c.m[i][j]);
}
void build(int lt,int rt,int v) {
tree[v].lt = lt;
tree[v].rt = rt;
if(lt == rt) {
if(lt <= n) read(tree[v].matrix);
else {
tree[v].matrix.m[][] = ;
tree[v].matrix.m[][] = ;
tree[v].matrix.m[][] = ;
tree[v].matrix.m[][] = ;
}
return;
}
int mid = (lt+rt)>>;
build(lt,mid,v<<);
build(mid+,rt,v<<|);
tree[v].matrix = Multiplication(tree[v<<].matrix,tree[v<<|].matrix);
}
Matrix query(int lt,int rt,int v){
if(tree[v].lt == lt && tree[v].rt == rt) return tree[v].matrix;
int mid = (tree[v].lt + tree[v].rt)>>;
if(rt <= mid) return query(lt,rt,v<<);
else if(lt > mid) return query(lt,rt,v<<|);
else return Multiplication(query(lt,mid,v<<),query(mid+,rt,v<<|));
}
int main() {
bool cao = false;
while(~scanf("%d %d %d",&r,&n,&m)){
int k = log2(n) + ;
k = <<k;
build(,k,);
if(cao) puts("");
cao = true;
bool flag = false;
while(m--){
int s,t;
if(flag) puts("");
flag = true;
scanf("%d %d",&s,&t);
Matrix ans = query(s,t,);
for(int i = ; i < ; ++i)
printf("%d %d\n",ans.m[i][],ans.m[i][]);
}
}
return ;
}

ZJU 2671 Cryptography的更多相关文章

  1. ZOJ 2671 Cryptography 矩阵乘法+线段树

    B - Cryptography Time Limit:5000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Subm ...

  2. ZOJ - 2671 Cryptography(线段树+求区间矩阵乘积)

    题意:已知n个矩阵(下标从1开始),求下标x~y区间矩阵的乘积.最多m次询问,n ( 1 <= n <= 30,000) and m ( 1 <= m <= 30,000). ...

  3. .Net使用system.Security.Cryptography.RNGCryptoServiceProvider类与System.Random类生成随机数

    .Net中我们通常使用Random类生成随机数,在一些场景下,我却发现Random生成的随机数并不可靠,在下面的例子中我们通过循环随机生成10个随机数: ; i < ; i++) { Rando ...

  4. ECC-Elliptic Curves Cryptography,椭圆曲线密码编码学

    ECC ECC-Elliptic Curves Cryptography,椭圆曲线密码编码学,是目前已知的公钥体制中,对每比特所提供加密强度最高的一种体制.在软件注册保护方面起到很大的作用,一般的序列 ...

  5. "System.Security.Cryptography.CryptographicException: 拒绝访问" 问题的解决方法

    .net web程序使用rsa算法进行加解密时,程序报告“System.Security.Cryptography.CryptographicException: 拒绝访问”错.按网上搜的解决方法做了 ...

  6. System.Security.Cryptography.CryptographicException: 指定了无效的提供程序类型

    这两天在调用银联在线的支付接口,把银联提供的demo代码copy过来放到自己网站上,生成通过了,但是运行的时候就报错了: 指定了无效的提供程序类型. 说明: 执行当前 Web 请求期间,出现未经处理的 ...

  7. Raspberry Pi 3 FAQ --- connect automatically to 'mirrors.zju.edu.cn' when downloading and how to accelerate download

    modify the software source: The software source is a place where several free application for linux ...

  8. [POJ2109]Power of Cryptography

    [POJ2109]Power of Cryptography 试题描述 Current work in cryptography involves (among other things) large ...

  9. ACM: Gym 100935B Weird Cryptography - 简单的字符串处理

    Weird Cryptography Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

随机推荐

  1. JAVAEE网上商城项目总结

    发送邮件实现(使用QQ邮箱发送到指定邮箱) 需要的jar 邮件发送类代码: package util; import java.util.Properties; import javax.mail.A ...

  2. java并发之阻塞队列

    在前面我们接触的队列都是非阻塞队列,比如PriorityQueue.LinkedList(LinkedList是双向链表,它实现了Dequeue接口). 阻塞队列与普通队列的区别在于:当队列是空的时, ...

  3. LinkedList 注意事项

      public E getFirst() 返回此列表的第一个元素. public E getLast() 返回此列表的最后一个元素. public E removeFirst() 移除并返回此列表的 ...

  4. Apache负载均衡与Tomcat集群配置学习(Windows环境)

    本文主要参考自http://www.iteye.com/topic/985404?dhcc,经由实际操作配置操并记录而成. 由于最近的一个Java开发项目用到了Tomcat中间件作为web服务器,刚开 ...

  5. HBase读取代码

    HBase读取代码 需要的jar包: activation-1.1.jar aopalliance-1.0.jar apacheds-i18n-2.0.0-M15.jar apacheds-kerbe ...

  6. 金蝶KIS标准版与金蝶K3的差别

    一.数据库  金蝶KIS标准版使用MS Access数据库.该数据库适用于小规模的数据处理,是比較经济的数据库解决方式,但当单个表的数据记录超过5万条时.执行的速度和稳定性都将受到一定程序的影响. K ...

  7. 朴素的UNIX之-调度器细节

    0.多进程调度的本质 我们都知道UNIX上有一个著名的nice调用.何谓nice,当然是"好"了.常规的想法是nice值越大越好,实际上,nice值越好,自己的优先级越低.那么为何 ...

  8. 【BZOJ 2724】 蒲公英

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=2724 [算法] 分块算法在线维护区间众数 分块算法的精髓就在于 : 大段维护,局部朴 ...

  9. Qt-信号和槽-1对1

    前言:信号和槽是Qt的核心机制,窗体和控件对象之间的沟通一般都使用信号和槽. 对于部件有哪些信号和槽,可以查看help文档. 一.使用自定义槽 1.1 新建工程 新建工程,新建Widget类(基于QW ...

  10. ROS-Gazebo-turtlebot3仿真

    前言:Gazebo是一款强大的3D仿真器,支持机器人开发所需的机器人.传感器和环境模型,并且通过搭载的物理引擎可以得到逼真的仿真结果.即便Gazebo是一款开源仿真器,却具有高水准的仿真性能,因此在机 ...