【SRM 717 DIV2 C】DerangementsDiv2
Problem Statement
You are given two ints: n and m.
Let D be the number of permutations of the set {1,2,…,n+m} such that the first m values are not fixed points of the permutation. Formally, we are interested in permutations p such that for each j between 1 and m, inclusive, we have p(j) != j.
Compute and return D modulo 1,000,000,007.
Definition
Class:
DerangementsDiv2
Method:
count
Parameters:
int, int
Returns:
int
Method signature:
int count(int n, int m)
(be sure your method is public)
Limits
Time limit (s):
2.000
Memory limit (MB):
512
Stack limit (MB):
512
Constraints
n will be between 0 and 50, inclusive.
m will be between 1 and 50, inclusive.
Examples
0)
0
2
Returns: 1
Here we are looking for permutations of {1, 2} such that p(1) != 1 and p(2) != 2. There is only one such permutation: the permutation (2, 1). In other words, the permutation p such that p(1) = 2 and p(2) = 1.
1)
2
1
Returns: 4
Here we are counting permutations of {1, 2, 3} such that p(1) != 1. There are four such permutations: (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). Here, (a, b, c) denotes a permutation p for which p(1) = a, p(2) = b, and p(3) = c.
2)
1
2
Returns: 3
This time we want permutations of {1, 2, 3} such that p(1) != 1 and p(2) != 2. The three such permutations are (2, 1, 3), (2, 3, 1), and (3, 1, 2).
3)
3
5
Returns: 21234
4)
20
27
Returns: 88437461
Watch out for integer overflow.
【题目链接】:
【题意】
给你两个整数n和m;
然后让你求1..n+m的一些满足以下要求的排列p的个数:
要求i从1..m满足p[i]!=i;
【题解】
容斥原理搞;
设ci表示1..m中有i个位置满足pi==i的方案数;
ci=C(m,i)*(n+m-i)!
则答案就为(n+m)!-c1∪c2∪c3…..∪cm
减号右边那个东西,用容斥原理搞
为了不重复计数;
先加上每一个位置都不同的方案,然后减去有两个位置不同的方案,然后加上有3个位置不同的方案,然后减去有4个位置不同的方案…
【Number Of WA】
0
【反思】
取模过程中会出现负数的话,要注意加上MOD数;
【完整代码】
#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
#define Open() freopen("F:\\rush.txt","r",stdin)
#define Close() ios::sync_with_stdio(0)
typedef pair<int, int> pii;
typedef pair<LL, LL> pll;
const int dx[9] = { 0,1,-1,0,0,-1,-1,1,1 };
const int dy[9] = { 0,0,0,-1,1,-1,1,-1,1 };
const double pi = acos(-1.0);
const int N = 50+5;
const LL MOD = (int) 1e9 + 7;
//head
LL c[N][N],fac[N+N];
class DerangementsDiv2
{
public:
int count(int n, int m)
{
rep1(i, 1, 50)
c[i][i] = c[i][0] = 1;
rep1(i, 1, 50)
rep1(j, 1, i - 1)
c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % MOD;
fac[0] = 1;
rep1(i, 1, 100)
fac[i] = (fac[i - 1] * i) % MOD;
LL ans = fac[n + m],temp = 0,p = 1;
rep1(i, 1, m) {
temp += (p*c[m][i]%MOD + MOD) % MOD*fac[n + m - i] % MOD;
p = -p;
}
ans = ((ans - temp)%MOD + MOD) % MOD;
return (int) ans;
}
};
【SRM 717 DIV2 C】DerangementsDiv2的更多相关文章
- 【SRM 717 div2 B】LexmaxReplace
Problem Statement Alice has a string s of lowercase letters. The string is written on a wall. Alice ...
- 【SRM 717 div2 A】 NiceTable
Problem Statement You are given a vector t that describes a rectangular table of zeroes and ones. Ea ...
- 【Codeforces #312 div2 A】Lala Land and Apple Trees
# [Codeforces #312 div2 A]Lala Land and Apple Trees 首先,此题的大意是在一条坐标轴上,有\(n\)个点,每个点的权值为\(a_{i}\),第一次从原 ...
- 【TP SRM 703 div2 250】AlternatingString
Problem Statement A string of zeros and ones is called an alternating string if no two adjacent char ...
- 【TP SRM 703 div2 500】 GCDGraph
Problem Statement You are given four ints: n, k, x, and y. The ints n and k describe a simple undire ...
- 【cf 483 div2 -C】Finite or not?(数论)
链接:http://codeforces.com/contest/984/problem/C 题意 三个数p, q, b, 求p/q在b进制下小数点后是否是有限位. 思路 题意转化为是否q|p*b^x ...
- 【市场调研与分析】Intel发力移动安全领域——By Me at 20140613
[市场调研与分析]Intel发力移动安全领域 ...
- 【疯狂造轮子-iOS】JSON转Model系列之二
[疯狂造轮子-iOS]JSON转Model系列之二 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 上一篇<[疯狂造轮子-iOS]JSON转Model系列之一> ...
- 【疯狂造轮子-iOS】JSON转Model系列之一
[疯狂造轮子-iOS]JSON转Model系列之一 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 之前一直看别人的源码,虽然对自己提升比较大,但毕竟不是自己写的,很容易遗 ...
随机推荐
- HTML基础——网站图片显示页面
1.图片标签 <img /> 属性: src:指的是图片显示的路径(位置) 绝对路径:D:\Pictures\Saved Pictures 相对路径: ①同一级:直接写文件名称或者./文件 ...
- 《Unix环境高级编程》读书笔记 第7章-进程环境
1. main函数 int main( int argc, char *argv[] ); argc是命令行参数的数目,包括程序名在内 argv是指向参数的各个指针所构成的数组,即指针数组 当内核执行 ...
- Dapper基础知识一
在下刚毕业工作,之前实习有用到Dapper?这几天新项目想用上Dapper,在下比较菜鸟,这块只是个人对Dapper的一种总结. 1,什么是Dapper? Dapper,.NET下的一种ORM ...
- idea运行提示Error:java:无效的源发行版:1.9
如果你是jdk1.8 改到8即可,如图:
- VUE项目axios请求头更改Content-Type
const httpServer = (opts, data) => { const token = localStorage.getItem('token') const PUBLIC = ` ...
- 多任务-进程之PID
1.进程pid,如何在程序中获取我们的进程号,从而查看当前的进程 # -*- coding:utf-8 -*- from multiprocessing import Process import o ...
- C语言实现简化的正则表达式
语法: 正则表达式和待匹配字符串都是一行 "^" 标记正则表达式的开始 "$" 标记正则表达式的结束 "*" 匹配前面的子表达式零次或多次 ...
- useradd: cannot open /etc/passwd
[root@ftp ~]# useradd -g ftp -s/sbin/nologin liwmuseradd: cannot open /etc/passwd [root@ftp ~]# user ...
- 常用Java开源库(新手必看)
Jakarta common: Commons LoggingJakarta Commons Logging (JCL)提供的是一个日志(Log)接口(interface),同时兼顾轻量级和不依赖于具 ...
- nginx php No input file specified 怎样处理?
配置nginx支持php 出现了No input file specified ? 仅仅要改动下安装文件夹下的 nginx.conf下的 location ~ \.php$ { ...