在IJCAI 于2015年举办的竞赛:Repeat Buyers Prediction Competition 中,
很多参赛队伍在最终的Slides展示中都表示使用了 AUC 作为评估指标
 
 

那么,AUC是什么呢?
AUC是一个机器学习性能度量指标,只能用于二分类模型的评价。(拓展二分类模型的其他评价指标:logloss、accuracy、precision)
 
对于二分类问题,可将样例根据其真实类别与学习器预测类别的组合划分为真正例(true positive)、假正例(false positive)、真反例(true negative)、假反例(false negative)四种情形,令 TP、FP、TN、FN分别表示其对应的样例数,则显然有 TP+FP+TN+FN=样例总数。
分类结果的“混淆矩阵”(confusion matrix)如下表所示:

AUC全称:Area under ROC curve
 
AUC的物理意义为任取一对例和负例,正例得分大于负例得分的概率,AUC越大,表明方法效果越好。
 
ROC全称为“受试者工作特征”(Receiver Operating Characteristic )曲线,源于二战中用于敌机检测的雷达信号分析技术。根据学习器的预测结果对样例进行排序,按此顺序逐个把样本作为正例进行预测,每次计算出两个重要量的值,分别以它们为横、纵坐标作图,就得到了“ROC”曲线,纵轴是“真正例率”(True Positive Rate,TPR),横轴是“假正例率”(False Positive Rate,FPR):

 
 

IJCAI-15比赛相关:
 
IJCAI-15 Dataset 数据集来自天猫(阿里云天池)。
 
论文名称:Identifying Repeat Buyers by Ensemble Learning with Historical Behavioral Features
作者:Shaohua jiang, Yunlei Mu, Qingyu Fan
会议期刊:IJCAI workshop
 
 
【Reference】
1. 周志华.机器学习[M].北京:清华大学出版社,2016.
 

机器学习性能度量指标:AUC的更多相关文章

  1. 机器学习性能度量指标:ROC曲线、查准率、查全率、F1

    错误率 在常见的具体机器学习算法模型中,一般都使用错误率来优化loss function来保证模型达到最优. \[错误率=\frac{分类错误的样本}{样本总数}\] \[error=\frac{1} ...

  2. 【Udacity】机器学习性能评估指标

    评估指标 Evaluation metrics 机器学习性能评估指标 选择合适的指标 分类与回归的不同性能指标 分类的指标(准确率.精确率.召回率和 F 分数) 回归的指标(平均绝对误差和均方误差) ...

  3. 机器学习实战笔记(Python实现)-07-分类性能度量指标

    1.混淆矩阵 下图是一个二类问题的混淆矩阵,其中的输出采用了不同的类别标签 常用的衡量分类性能的指标有: 正确率(Precision),它等于 TP/(TP+FP) ,给出的是预测为正例的样本中的真正 ...

  4. [sklearn]性能度量之AUC值(from sklearn.metrics import roc_auc_curve)

    原创博文,转载请注明出处! 1.AUC AUC(Area Under ROC Curve),即ROC曲线下面积. 2.AUC意义 若学习器A的ROC曲线被学习器B的ROC曲线包围,则学习器B的性能优于 ...

  5. [机器学习] 性能评估指标(精确率、召回率、ROC、AUC)

    混淆矩阵 介绍这些概念之前先来介绍一个概念:混淆矩阵(confusion matrix).对于 k 元分类,其实它就是一个k x k的表格,用来记录分类器的预测结果.对于常见的二元分类,它的混淆矩阵是 ...

  6. 机器学习性能评估指标(精确率、召回率、ROC、AUC)

    http://blog.csdn.net/u012089317/article/details/52156514 ,y^)=1nsamples∑i=1nsamples(yi−y^i)2

  7. 【sklearn】性能度量指标之ROC曲线(二分类)

    原创博文,转载请注明出处! 1.ROC曲线介绍 ROC曲线适用场景 二分类任务中,positive和negtive同样重要时,适合用ROC曲线评价 ROC曲线的意义 TPR的增长是以FPR的增长为代价 ...

  8. 机器学习实战笔记(Python实现)-07-模型评估与分类性能度量

    1.经验误差与过拟合 通常我们把分类错误的样本数占样本总数的比例称为“错误率”(error rate),即如果在m个样本中有a个样本分类错误,则错误率E=a/m:相应的,1-a/m称为“精度”(acc ...

  9. 机器学习常用性能度量中的Accuracy、Precision、Recall、ROC、F score等都是些什么东西?

    一篇文章就搞懂啦,这个必须收藏! 我们以图片分类来举例,当然换成文本.语音等也是一样的. Positive 正样本.比如你要识别一组图片是不是猫,那么你预测某张图片是猫,这张图片就被预测成了正样本. ...

随机推荐

  1. JAVA常见算法题(三十五)

    判断一个整数能被几个9整除. public static void main(String[] args) { f(729); f(730); } public static void f(int n ...

  2. MIR Flickr 1M 图像数据集(点击即可下载)

    Index of /mirflickr/mirflickr1m Name Last modified Size Description Parent Directory   -   exif.zip ...

  3. scala的一些特殊用法

    1.创建多行字符串,只要把多行字符串放在3个双引号间("""...""")即可.这是Scala对于here document,或者叫here ...

  4. WampServer和phpStorm的用法

    WampServer的安装 修改默认的浏览器和文本编辑器 phpStore创建一个PHP工程 在phpStore中运行我们的项目 配制一个PHP Script运行环境 配制一个PHP Web Page ...

  5. 一步步教你如何在 Visual Studio 2013 上使用 Github

    介绍 我承认越是能将事情变简单的工具我越会更多地使用它.尽管我已经知道了足够的命令来使用Github,但我宁愿它被集成到IDE中.在本教程中,我会告诉你使用Visual Studio 2013如何实现 ...

  6. ajax局部刷新一个div下的jsp

    用AJAX刷新一个DIV中的jsp内容 <script type="text/javascript"> var xmlhttp; function startrefre ...

  7. [Big Data] Week4B (Basic)

    Question 1 Note: In this question, all columns will be written in their transposed form, as rows, to ...

  8. 表结构变更后出现的ERROR OGG-01161 Bad column index (88)

    2014-07-31 09:38:31 ERROR OGG-01668 PROCESS ABENDING. 2014-07-31 09:38:31 ERROR OGG-01161 Bad column ...

  9. Discuz常见小问题-如何修改导航栏

    1 比如我要修改第一个导航栏,则在界面-导航设置,主导航,然后点击右边的编辑按钮 2 比如我把"首页"的名字改成"论坛首页",别的都不改,然后点击提交,刷新页面 ...

  10. Silverlight 之 浅析

    一.silverlight定义及作用 silverlight用XAML来做前端界面,用.NET或者JS作为程序脚本支持,在浏览器内外运行的应用.可以认为和FLASH 和ADOBE AIR有很大的功能重 ...