https://blog.csdn.net/Maxwei_wzj/article/details/80714129

n个二项式相乘可以用分治+FFT的方法,使用空间回收可以只开log个数组。

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=,mod=;
int n,top,ans,w[N],a[N],rev[N],S[],tmp[][N]; int ksm(int a,int b){
int res=;
for (; b; a=1ll*a*a%mod,b>>=)
if (b & ) res=1ll*res*a%mod;
return res;
} void NTT(int a[],int len,int f){
int n=,L=;
for (; n<len; n<<=) L++;
for (int i=; i<n; i++) rev[i]=(rev[i>>]>>)|((i&)<<(L-));
for (int i=; i<n; i++) if (i<rev[i]) swap(a[i],a[rev[i]]);
for (int i=; i<n; i<<=){
int wn=ksm(,(f==) ? (mod-)/(i<<) : (mod-)-(mod-)/(i<<));
for (int p=i<<,j=; j<n; j+=p){
int w=;
for (int k=; k<i; k++,w=1ll*w*wn%mod){
int x=a[j+k],y=1ll*w*a[i+j+k]%mod;
a[j+k]=(x+y)%mod; a[i+j+k]=(x-y+mod)%mod;
}
}
}
if (f==) return;
int inv=ksm(n,mod-);
for (int i=; i<n; i++) a[i]=1ll*a[i]*inv%mod;
} int solve(int l,int r,int a[]){
if (l==r){ a[]=; a[w[l]]=mod-; return w[l]; }
int mid=(l+r)>>,l1,l2,ls,rs,n;
ls=S[top--]; l1=solve(l,mid,tmp[ls]);
rs=S[top--]; l2=solve(mid+,r,tmp[rs]);
for (n=; n<=l1+l2; n<<=);
NTT(tmp[ls],n,); NTT(tmp[rs],n,);
for (int i=; i<n; i++) a[i]=1ll*tmp[ls][i]*tmp[rs][i]%mod;
NTT(a,n,-); S[++top]=ls; S[++top]=rs;
for (int i=; i<n; i++) tmp[ls][i]=tmp[rs][i]=;
return l1+l2;
} int main(){
freopen("kill.in","r",stdin);
freopen("kill.out","w",stdout);
scanf("%d",&n);
rep(i,,n) scanf("%d",&w[i]);
rep(i,,) S[++top]=i;
int len=solve(,n,a);
rep(i,,len) ans=(ans+1ll*a[i]*ksm(w[]+i,mod-))%mod;
printf("%lld\n",1ll*ans*w[]%mod);
return ;
}

[LOJ2541][PKUWC2018]猎人杀(容斥+分治+FFT)的更多相关文章

  1. LOJ2541 PKUWC2018 猎人杀 期望、容斥、生成函数、分治

    传送门 首先,每一次有一个猎人死亡之后\(\sum w\)会变化,计算起来很麻烦,所以考虑在某一个猎人死亡之后给其打上标记,仍然计算他的\(w\),只是如果打中了一个打上了标记的人就重新选择.这样对应 ...

  2. LOJ2541 PKUWC2018猎人杀(概率期望+容斥原理+生成函数+分治NTT)

    考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #i ...

  3. LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)

    题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...

  4. [LOJ2541] [PKUWC2018] 猎人杀

    题目链接 LOJ:https://loj.ac/problem/2541 Solution 很巧妙的思路. 注意到运行的过程中概率的分母在不停的变化,这样会让我们很不好算,我们考虑这样转化:假设所有人 ...

  5. 【LOJ2541】【PKUWC2018】猎人杀(容斥,FFT)

    [LOJ2541][PKUWC2018]猎人杀(容斥,FFT) 题面 LOJ 题解 这题好神仙啊. 直接考虑概率很麻烦,因为分母总是在变化. 但是,如果一个人死亡之后,我们不让他离场,假装给他打一个标 ...

  6. loj2541 「PKUWC2018」猎人杀 【容斥 + 分治NTT】

    题目链接 loj2541 题解 思路很妙啊, 人傻想不到啊 觉得十分难求,考虑容斥 由于\(1\)号可能不是最后一个被杀的,我们容斥一下\(1\)号之后至少有几个没被杀 我们令\(A = \sum\l ...

  7. 【洛谷5644】[PKUWC2018] 猎人杀(容斥+生成函数+分治NTT)

    点此看题面 大致题意: 有\(n\)个人相互开枪,每个人有一个仇恨度\(a_i\),每个人死后会开枪再打死另一个还活着的人,且第一枪由你打响.设当前剩余人仇恨度总和为\(k\),则每个人被打中的概率为 ...

  8. LOJ 2541 「PKUWC2018」猎人杀——思路+概率+容斥+分治

    题目:https://loj.ac/problem/2541 看了题解才会……有三点很巧妙. 1.分母如果变动,就很不好.所以考虑把操作改成 “已经选过的人仍然按 \( w_i \) 的概率被选,但是 ...

  9. LOJ2541. 「PKUWC2018」猎人杀 [概率,分治NTT]

    传送门 思路 好一个神仙题qwq 首先,发现由于一个人死之后分母会变,非常麻烦,考虑用某种方法定住分母. 我们稍微改一改游戏规则:一个人被打死时只打个标记,并不移走,也就是说可以被打多次但只算一次.容 ...

随机推荐

  1. 添加 MySql 服务、Tomcat服务到windows服务中

    添加 MySql 服务到windows服务中: cmd --> F:\MySql\MySqlServer5.1\bin\mysqld --install 这样用默认的 MySQL 为名称添加一个 ...

  2. es6解构、中括号前加分号

    在写项目的时候,为了方便使用了下对象的解构,无奈又遇到一坑. 为什么会不能解构呢?因为这里的{}会导致歧义,因为 JavaScript 引擎会将{xxxxx}理解成一个代码块,从而发生语法错误.只有不 ...

  3. JS设计模式——7.工厂模式(示例-XHR)

    XHR工厂 基本实现 var AjaxHandler = new Interface('AjaxHandler', ['request', 'createXHR']); var SimpleHandl ...

  4. hdu 1251 统计难题(字典树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1251 统计难题 Time Limit: 4000/2000 MS (Java/Others)    M ...

  5. python 面试题2

    问题一:以下的代码的输出将是什么? 说出你的答案并解释. class Parent(object): x = 1 class Child1(Parent): pass class Child2(Par ...

  6. jQuery文档处理(追加删除)——(三)

    1.追加内容

  7. 【codeforces】【比赛题解】#940 CF Round #466 (Div. 2)

    人生的大起大落莫过如此,下一场我一定要回紫. [A]Points on the line 题意: 一个直线上有\(n\)个点,要求去掉最少的点,使得最远两点距离不超过\(d\). 题解: 暴力两重fo ...

  8. Linux学习笔记-Linux系统简介

    Linux学习笔记-Linux系统简介 UNIX与Linux发展史 UNIX是父亲,Linux是儿子. UNIX发行版本 操作系统 公司 硬件平台 AIX IBM PowerPC HP-UX HP P ...

  9. 03 Editor plugins and IDEs 编辑器插件和 ide

    Editor plugins and IDEs  编辑器插件和 ide Introduction  介绍 Options 选项   Introduction 介绍 This document list ...

  10. maven scope 'provided' 和 ‘compile’的区别

    解释 其实这个问题很简单. 对于scope=compile的情况(默认scope),也就是说这个项目在编译,测试,运行阶段都需要这个artifact(模块)对应的jar包在classpath中. 而对 ...