理解Spring定时任务的fixedRate和fixedDelay
用过 Spring 的 @EnableScheduling 的都知道,我们用三种形式来部署计划任务,即 @Scheduled 注解的 fixedRate(fixedRateString), fixedDelay(fixedDelayString), 以及 cron. cron 不在这里讨论的范畴。
我们着重在如何理解 fixedRate 和 fixedDelay 的区别。
在 Spring 的 Scheduled 注解的 JavaDoc 对此的解释很简单
public abstract long fixedRate
Execute the annotated method with a fixed period in milliseconds between invocations. public abstract long fixedDelay
Execute the annotated method with a fixed period in milliseconds between the end of the last invocation and the start of the next.
只是说是 fixedRate 任务两次执行时间间隔是任务的开始点,而 fixedDelay 的间隔是前次任务的结束与下次任务的开始。
大致用示意字符串来表示如下(每个 T1, 或 T2 代表任务执行秒数(每次任务执行时间不定),假定 fixedRate 或 fixedDelay 的值是 5 秒,用 W 表示等待的数)
fixedRate: T1.T1WWWT2.T2.T2WW.T3.T3.T3.T3.T3.T4.T4.T4.T4.T4.T4.T4T5T5WWWT6.T6........
fixedDelay: T1.T1.WWWWW.T2.T2.T2WWWWW.T3.T3.T3.T3.T3.WWWWW.T4.T4.T4.T4.T4.T4.T4.WWWWWT6.T6......
一般来说能理解到上面两个场景已经差不多了,相比而言 fixedDelay 简单些,盯着上一次任务的屁股就行。
以前我对 fixedRate 还有一个误区就是,以为任务时长超过 fixedRate 时会启动多个任务实例,其实不会; 只不过会在上次任务执行完后立即启动下一轮。除非这个 Job 方法用 @Async 注解了,使得任务不在 TaskScheduler 线程池中执行,而是每次创建新线程来执行。
具体理解我们可以用代码来演示
@EnableScheduling
@SpringBootApplication
public class Application { private AtomicInteger number = new AtomicInteger(); public static void main(String[] args) {
SpringApplication.run(Application.class, args);
} @Bean
public TaskScheduler taskScheduler() {
ThreadPoolTaskScheduler taskScheduler = new ThreadPoolTaskScheduler();
taskScheduler.setPoolSize(5);
return taskScheduler;
} @Scheduled(fixedRate = 5000)
public void job() {
LocalTime start = LocalTime.now();
System.out.println(Thread.currentThread() + " start " + number.incrementAndGet() + " @ " + start);
try {
Thread.sleep(ThreadLocalRandom.current().nextInt(15) * 1000);
} catch (InterruptedException e) {
}
LocalTime end = LocalTime.now();
System.out.println(Thread.currentThread() + " end " + number.get() + " @ " + end
+ ", seconds cost " + (ChronoUnit.SECONDS.between(start, end)));
}
}
初始化了一个线程池大小为 5 的 TaskScheduler, 避免了所有任务都用一个线程来执行。 上例中的 fixedRate 为 5 秒,任务执行时间在 0 ~ 15 秒之间,先来看一组数据(样本数据越多越生动)
Thread[taskScheduler-1,5,main] start 1 @ 01:23:11.726
Thread[taskScheduler-1,5,main] end 1 @ 01:23:24.732, seconds cost 13
Thread[taskScheduler-1,5,main] start 2 @ 01:23:24.736
Thread[taskScheduler-1,5,main] end 2 @ 01:23:28.737, seconds cost 4
Thread[taskScheduler-2,5,main] start 3 @ 01:23:28.738
Thread[taskScheduler-2,5,main] end 3 @ 01:23:40.739, seconds cost 12
Thread[taskScheduler-1,5,main] start 4 @ 01:23:40.740
Thread[taskScheduler-1,5,main] end 4 @ 01:23:52.745, seconds cost 12
Thread[taskScheduler-3,5,main] start 5 @ 01:23:52.745
Thread[taskScheduler-3,5,main] end 5 @ 01:24:00.748, seconds cost 8
Thread[taskScheduler-3,5,main] start 6 @ 01:24:00.749
Thread[taskScheduler-3,5,main] end 6 @ 01:24:05.750, seconds cost 5
Thread[taskScheduler-3,5,main] start 7 @ 01:24:05.750
Thread[taskScheduler-3,5,main] end 7 @ 01:24:05.750, seconds cost 0
Thread[taskScheduler-3,5,main] start 8 @ 01:24:05.750
Thread[taskScheduler-3,5,main] end 8 @ 01:24:14.752, seconds cost 9
Thread[taskScheduler-3,5,main] start 9 @ 01:24:14.752
Thread[taskScheduler-3,5,main] end 9 @ 01:24:26.756, seconds cost 12
Thread[taskScheduler-3,5,main] start 10 @ 01:24:26.757
Thread[taskScheduler-3,5,main] end 10 @ 01:24:39.757, seconds cost 13
Thread[taskScheduler-3,5,main] start 11 @ 01:24:39.757
Thread[taskScheduler-3,5,main] end 11 @ 01:24:43.761, seconds cost 4
Thread[taskScheduler-3,5,main] start 12 @ 01:24:43.762
Thread[taskScheduler-3,5,main] end 12 @ 01:24:47.763, seconds cost 4
Thread[taskScheduler-3,5,main] start 13 @ 01:24:47.763
Thread[taskScheduler-3,5,main] end 13 @ 01:24:49.766, seconds cost 2
Thread[taskScheduler-3,5,main] start 14 @ 01:24:49.767
把 start 行用红色显示。
- 任务 1 与 2 之间间隔时间是任务时长 13,所以任务 2 在 1 结束后立即启动
- 任务 3 与 2 之间间隔还不到 5 秒,也是在任务 2 结束后立即执行
- 后面都是在上次任务结束后立即执行下一次任务,看到 7 与 8 之间相差 0 秒,13 与 14 之间相关 2 秒
从上面的结果分析,似乎 fixedRate 越到后面都不起作用,总是任务一个接一个的执行。也就是说上面 fixedRate 的示意串
T1.T1WWWT2.T2.T2WW.T3.T3.T3.T3.T3.T4.T4.T4.T4.T4.T4.T4T5T5WWWT6.T6........
已经不成立了,当中间发生了一长时间的任务后,fixedRate 变成了如下的形式
T1.T1.WWWT2.T2.T2.T2.T2.T2.T2.T2.T2.T2.T2.T2.T3.T3.T3.T3.T4.T4.T4.T5.T5.T5.......
任务间的等待都被抹除掉了,这是为什么呢?因为 fixedRate 会对将要执行的任务作一个预先编排,由上输出可以第一次任务在 01:23:11 时间点启动,所以 fixedRate 会基于此把一个时间表准备好,如下
| 01:23:16 | T2 | T1 执行后时间来到了 01:23:24, 下一次任务 T2 安排在更早的时间,所以立即执行 T2 |
| 01:23:21 | T3 | T2 完后时间是 01:23:28, T3 的安排时间也比它早,所以也是立即执行 T3 |
| 01:23:26 | T4 | T3 完后时间是 01:23:40, 无需等待立即执行 T4 |
| 01:23:31 | T5 |
后面的情况都是一样的, T5.endTime > T6.scheduledTime + fixedRate, 所以立即执行 T6 除非有一些短任务能把时间压缩回去,造成上一次任务结束后需要进行等待 |
| 01:23:35 | T6 | |
| 01:23:41 | T7 |
因此,fixedRate 总是在上一次任务结束后从时间表中挑出下一次任务,对比该任务所预先排好的时间是否晚于上次任务启动时间加上 fixedRate 值,是则等待到预定的时间,否则立即执行。
假设 T1 执行完后时间是 T1.endTime, 这时候判断 T1.endTime < T2.scheduledTime + fixedRate, 是则等待到 T2.scheduledTime 启动 T2, 否则立即执行 T2
我们可以用代码进一步来验证上面的说法,其实最具说服力的莫过于源代码,这里只提供感观体验
代码的改动是第一次任务执行时间为 23 秒,此后的任务是不耗时的空操作
private AtomicBoolean firstTime = new AtomicBoolean(true);
@Scheduled(fixedRate = 5000)
public void job() {
LocalTime start = LocalTime.now();
System.out.println(Thread.currentThread() + " start " + number.incrementAndGet() + " @ " + start);
if (firstTime.getAndSet(false)) {
try {
Thread.sleep(23000);
} catch (InterruptedException e) {
}
}
LocalTime end = LocalTime.now();
System.out.println(Thread.currentThread() + " end " + number.get() + " @ " + end
+ ", seconds cost " + (ChronoUnit.SECONDS.between(start, end)));
}
输出为
Thread[taskScheduler-1,5,main] start 1 @ 03:27:54.556
Thread[taskScheduler-1,5,main] end 1 @ 03:28:17.562, seconds cost 23
Thread[taskScheduler-1,5,main] start 2 @ 03:28:17.566
Thread[taskScheduler-1,5,main] end 2 @ 03:28:17.566, seconds cost 0
Thread[taskScheduler-2,5,main] start 3 @ 03:28:17.566
Thread[taskScheduler-2,5,main] end 3 @ 03:28:17.567, seconds cost 0
Thread[taskScheduler-1,5,main] start 4 @ 03:28:17.584
Thread[taskScheduler-1,5,main] end 4 @ 03:28:17.584, seconds cost 0
Thread[taskScheduler-4,5,main] start 5 @ 03:28:17.584
Thread[taskScheduler-4,5,main] end 5 @ 03:28:17.584, seconds cost 0
Thread[taskScheduler-4,5,main] start 6 @ 03:28:19.549
Thread[taskScheduler-4,5,main] end 6 @ 03:28:19.550, seconds cost 0
Thread[taskScheduler-4,5,main] start 7 @ 03:28:24.549
Thread[taskScheduler-4,5,main] end 7 @ 03:28:24.550, seconds cost 0
Thread[taskScheduler-4,5,main] start 8 @ 03:28:29.548
Thread[taskScheduler-4,5,main] end 8 @ 03:28:29.549, seconds cost 0
Thread[taskScheduler-4,5,main] start 9 @ 03:28:34.546
因为第一次任务 23 秒的延误,所以后续的任务 2, 3, 4, 5 都是上次任务(耗时为 0)完后立即执行,任务 6 把 2 秒的差距找回来了,以后都是每隔 5 秒执行一次。
fixedDelay 的逻辑就相当简单了,基本无需用代码来演示。不妨把上面的代码中的 fixedRate 改成 fixedDelay 来一见分晓:
Thread[taskScheduler-1,5,main] start 1 @ 02:54:33.750
Thread[taskScheduler-1,5,main] end 1 @ 02:54:43.756, seconds cost 10
Thread[taskScheduler-1,5,main] start 2 @ 02:54:48.765
Thread[taskScheduler-1,5,main] end 2 @ 02:55:00.767, seconds cost 12
Thread[taskScheduler-2,5,main] start 3 @ 02:55:05.769
Thread[taskScheduler-2,5,main] end 3 @ 02:55:11.772, seconds cost 6
Thread[taskScheduler-1,5,main] start 4 @ 02:55:16.775
Thread[taskScheduler-1,5,main] end 4 @ 02:55:21.781, seconds cost 5
Thread[taskScheduler-3,5,main] start 5 @ 02:55:26.785
Thread[taskScheduler-3,5,main] end 5 @ 02:55:27.787, seconds cost 1
Thread[taskScheduler-3,5,main] start 6 @ 02:55:32.789
Thread[taskScheduler-3,5,main] end 6 @ 02:55:41.792, seconds cost 9
Thread[taskScheduler-3,5,main] start 7 @ 02:55:46.794
总是上次任务结束 5 秒后,由此可见 fixedDelay 不存在任务的预先编排操作了,都是相机而为。
最后小结一下:fixedRate 每次任务结束后会从任务编排表中找下一次该执行的任务,判断是否到时机执行。fixedRate 的任务某次执行时间再长也不会造成两次任务实例同时执行,除非用了 @Async 注解。 fixedDelay 总是前一次任务完成后,延时固定长度然后执行一次任务
本文来自于: https://unmi.cc/understand-spring-schedule-fixedrate-fixeddelay/, 来自 隔叶黄莺 Unmi Blog
理解Spring定时任务的fixedRate和fixedDelay的更多相关文章
- 理解 Spring 定时任务的 fixedRate 和 fixedDelay 的区别
用过 Spring 的 @EnableScheduling 的都知道,有三种方式,即 @Scheduled 注解的 fixedRate(fixedRateString), fixedDelay(fix ...
- 理解Spring定时任务@Scheduled的两个属性fixedRate和fixedDelay
fixedRate和fixedDelay都是表示任务执行的间隔时间 fixedRate和fixedDelay的区别:fixedDelay非常好理解,它的间隔时间是根据上次的任务结束的时候开始计时的.比 ...
- spring 定时任务配置
1.(易)如何在spring中配置定时任务? spring的定时任务配置分为三个步骤: 1.定义任务 2.任务执行策略配置 3.启动任务 (程序中一般我们都是到过写的,直观些) 1.定义任务 < ...
- 关于Spring定时任务(定时器)用法
Spring定时任务的几种实现 Spring定时任务的几种实现 一.分类 从实现的技术上来分类,目前主要有三种技术(或者说有三种产品): 从作业类的继承方式来讲,可以分为两类: 从任务调度的触发时机来 ...
- (3)Spring定时任务的几种实现
Spring定时任务的几种实现 近日项目开发中需要执行一些定时任务,比如需要在每天凌晨时候,分析一次前一天的日志信息,借此机会整理了一下定时任务的几种实现方式,由于项目采用spring框架,所以我都将 ...
- spring定时任务的几种实现方式
Spring定时任务的几种实现 近日项目开发中需要执行一些定时任务,比如需要在每天凌晨时候,分析一次前一天的日志信息,借此机会整理了一下定时任务的几种实现方式,由于项目采用spring框架,所以我都将 ...
- (转)Spring定时任务的几种实现
Spring定时任务的几种实现 博客分类: spring框架 quartzspringspring-task定时任务注解 Spring定时任务的几种实现 近日项目开发中需要执行一些定时任务,比如需要 ...
- Spring定时任务@Scheduled注解使用方式
1.开篇 spring的@Scheduled定时任务相信大家都是十分熟悉.最近在使用过程中发现了一些问题,写篇文章,和大家分享一下.结论在最后,不想看冗长过程的小伙伴可以直接拉到最后看结论. 2.简单 ...
- spring定时任务注解@Scheduled的记录
spring 定时任务@Scheduled 转自https://www.cnblogs.com/0201zcr/p/5995779.html 1.配置文件 <?xml version=" ...
随机推荐
- SQL Server 索引基本概念与优化
数据页和区 页 SQL Server 中的数据以“页”(Page)的形式保存数据,页是SQL Server 的IO单位,读/写一次至少是一页.一页为8K(8192byte). 页由三部分组成,页头,数 ...
- Android 如何修改gen下包的名字
前言 当将项目中包进行重命名后,所有包名字修改了,但是在gen目录下android sdk 自动生成的包名并没有修改,如果要引用R.java 中的字段, 又得import以前的包名字. 原因 出现 ...
- RabbitMQ基础入门篇
下载安装 Erlang RabbitMQ 启动RabbitMQ管理平台插件 DOS下进入到安装目录\sbin,执行以下命令 rabbitmq-plugins enable rabbitmq_manag ...
- Null类型的DateTime怎么用在TimeSpan上!
太TM简单了.. DateTime ts1 = Convert.ToDateTime(workinfo.WorkTime.ToString()); DateTime ts2 = Convert.ToD ...
- 逆变(contravariant)与协变(covariant)
逆变(contravariant)与协变(covariant)是C#4新增的概念,许多书籍和博客都有讲解,我觉得都没有把它们讲清楚,搞明白了它们,可以更准确地去定义泛型委托和接口,这里我尝试画图详细解 ...
- 2.jquery在js中写标准的ajax请求
$(function(){ $.ajax({ url:"http://www.microsoft.com", //请求的url地址 dataType:"json" ...
- Flask从入门到精通之Jinja2模板引擎
我们使用一个简单的例子切入到Jinja2模板引擎,形式最简单的Jinja2模板引擎就是一个包含响应文本的文件,实例如下: <h1>Hello World!</h1> 最简单的包 ...
- Java并发编程之happens-before
happens-before是JMM最核心的概念,理解happens-before是理解JMM的关键. 一.JMM的设计 首先,让我们先分析一下JMM的设计意图.从JMM的设计者的角度,在设计JMM的 ...
- Chrome谷歌浏览器已停用不支持的扩展程序解决方法
在不能上外网的情况下解决该问题: http://www.liu16.com/post/Chrome_2447.html
- 1. Python中如何使用其他语言?(python的胶水作用,python又叫胶水语言)
1. python中如何插入C语言运行? (1)编写C语言代码: #include<stdio.h> void CFun() { printf("---------我是c语言:- ...