51Nod1584 加权约数和
这题其实就是反演一波就好了(那你还推了一下午+一晚上),不过第一次碰到\(O(n\log n)\)预处理分块和式的方法……
不知为啥我跟唐教主的题解推的式子不太一样……(虽然本质上可能是相同的吧)
那就写一写好了,顺便骗点访问量(逃
\nonumber\text{Let}\space A=&\sum_{i=1}^n\sum_{j=1}^i i\sigma_1(ij),B=\sum_{i=1}^n i\sigma_1(i^2)\\
\nonumber\text{Then}\space Ans=&2A-B\\
\end{align}\]
\nonumber A=&\sum_{i=1}^n\sum_{j=1}^i i\sigma_1(ij)\\
\nonumber =&\sum_{i=1}^n\sum_{j=1}^i i\sum_{p|i}\sum_{q|j}[(p,q)=1]\frac{pj}q\\
\nonumber =&\sum_{d=1}^n\mu(d)\sum_{i=1}^n\sum_{j=1}^i i\sum
_{p|i}\sum_{q|j}[d|(p,q)]\frac{pj}q\\
\nonumber =&\sum_{d=1}^n\mu(d)\sum_{d|p}p\left(\sum_{p|i}i\right)\sum_{d|q}\sum_{q|j}^i \frac j q\\
\nonumber =&\sum_{d=1}^n\mu(d)\sum_{p=1}^{\left\lfloor\frac n d\right\rfloor}dp\left(\sum_{p|i}^{\left\lfloor\frac n d\right\rfloor}di\right)\sum_{q=1}^{\left\lfloor\frac n d\right\rfloor}\sum_{q|j}^i \frac{dj}{dq}\\
\nonumber =&\sum_{d=1}^n\mu(d)\sum_{p=1}^{\left\lfloor\frac n d\right\rfloor}dp\left(\sum_{p|i}^{\left\lfloor\frac n d\right\rfloor}di\right)\sum_{q=1}^i\sum_{q|j}^i \frac j q\\
\nonumber =&\sum_{d=1}^n\mu(d)d^2\sum_{i=1}^{\left\lfloor\frac n d\right\rfloor}i\left(\sum_{p|i}p\right)\sum_{j=1}^i\sum_{q|j}\frac j q\\
\nonumber =&\sum_{d=1}^n\mu(d)d^2\sum_{i=1}^{\left\lfloor\frac n d\right\rfloor}i\sigma_1(i)\sum_{j=1}^i\sigma_1(j)\\
\nonumber =&\sum_{d=1}^n\mu(d)d^2\sum_{i=1}^{\left\lfloor\frac n d\right\rfloor}i\sigma_1(i)S_{\sigma_1}(i)
\end{align}\]
\nonumber B=&\sum_{i=1}^n i\sigma_1(i^2)\\
\nonumber =&\sum_{i=1}^n i\sum_{p|i}\sum_{q|j}[(p,q)=1]\frac{pi}q\\
\nonumber =&\sum_{d=1}^n\mu(d)\sum_{i=1}^n i\sum_{p|i}\sum_{q|j}[d|(p,q)]\frac{pi}q\\
\nonumber =&\sum_{d=1}^n\mu(d)\sum_{d|i} i\sum_{d|p|i}\sum_{d|q|j}\frac{pi}q\\
\nonumber =&\sum_{d=1}^n\mu(d)d^2\sum_{i=1}^{\left\lfloor\frac n d\right\rfloor} i\sum_{p|i}\sum_{q|j}p\frac i q\\
\nonumber =&\sum_{d=1}^n\mu(d)d^2\sum_{i=1}^{\left\lfloor\frac n d\right\rfloor} i\sigma_1^2(i)\\
\end{align}\]
\]
到了这里就可以用\(O(n)\)预处理+单次询问\(O(\sqrt n)\)的经典做法了,总复杂度\(O(n+T\sqrt n)\)。
但是这样还是有点慢……常数优化到一定程度之后极限数据仍然要跑2s+(卡常技巧不行……逃),看来常数优化玩不了了,只能试试别的做法。
考虑枚举\(d\)和\(k=\left\lfloor\frac n d\right\rfloor\),并考虑它们能对哪些\(n\)作出贡献。不难发现,如果\(\left\lfloor\frac n d\right\rfloor=k\),那么一定有\(n\in[dk,d(k+1))\),再稍加观察就能得到每对\((d,k)\)都会对\(\ge dk\)的所有\(n\)作出贡献,因此枚举所有\(d,k\)并差分一下,最后求一遍前缀和即可。
这样就能做到预处理\(O(n\log n)\),询问\(O(1)\)了,不用卡常也可以过。
#pragma GCC optimize("Ofast")
#include<stdio.h>
#define int unsigned
using namespace std;
template<class T>inline void readint(T &v){
int x=0;
char c=getchar();
while(c<48)c=getchar();
while(c>47){
x=x*10+(c^48);
c=getchar();
}
v=x;
}
template<class T>inline void writeint(T x){
static int a[25];
if(!x)putchar('0');
else{
int i=0;
while(x){
a[++i]=x%10;
x/=10;
}
while(i)putchar(a[i--]^48);
}
}
const int maxn=1000010,p=1000000007;
void get_table(int);
bool notp[maxn];
int prime[maxn],mu[maxn],sigma[maxn],ans[maxn],f[maxn];
signed main(){
get_table(1000000);
int T;
readint(T);
for(int k=1;k<=T;k++){
int n;
readint(n);
putchar('C');
putchar('a');
putchar('s');
putchar('e');
putchar(' ');
putchar('#');
writeint(k);
putchar(':');
putchar(' ');
writeint(ans[n]);
putchar('\n');
}
return 0;
}
void get_table(int n){
mu[1]=sigma[1]=1;
for(int i=2;i<=n;i++){
if(!notp[i]){
prime[++prime[0]]=i;
mu[i]=-1;
sigma[i]=i+1;
f[i]=1;
}
for(int j=1;j<=prime[0]&&i*prime[j]<=n;j++){
notp[i*prime[j]]=true;
if(i%prime[j]){
mu[i*prime[j]]=-mu[i];
sigma[i*prime[j]]=(long long)sigma[i]*(prime[j]+1)%p;
f[i*prime[j]]=i;
}
else{
if(f[i]==1)sigma[i*prime[j]]=((long long)prime[j]*sigma[i]+1)%p;
else sigma[i*prime[j]]=(long long)sigma[i/f[i]*prime[j]]*sigma[f[i]]%p;
f[i*prime[j]]=f[i];
}
}
}
for(int i=2,sum=1;i<=n;i++){
sum+=sigma[i];
if(sum>=p)sum-=p;
sigma[i]=(long long)i*sigma[i]%p*(2ll*sum-sigma[i]+p)%p;
}
for(int i=1;i<=n;i++){
int t=((long long)i*i%p*(signed)mu[i]+p)%p;
for(int j=1;i*j<=n;j++)ans[i*j]=(ans[i*j]+(long long)t*sigma[j])%p;
}
for(int i=2;i<=n;i++){
ans[i]+=ans[i-1];
if(ans[i]>=p)ans[i]%=p;
}
}
51Nod1584 加权约数和的更多相关文章
- 51nod1584加权约数和
题目大意: 求: \[ \sum_{i-1}^n\sum_{j=1}^nmax(i,j)\sigma(i*j) \] 题解 对于这个\(\max\),套路的把它转化成: \[ 2*\sum_{i=1} ...
- 【51Nod1584】加权约数和(数论)
[51Nod1584]加权约数和(数论) 题面 51Nod 题解 要求的是\[\sum_{i=1}^n\sum_{j=1}^n max(i,j)\sigma(ij)\] 这个\(max\)太讨厌了,直 ...
- 51NOD 1584 加权约数和 [莫比乌斯反演 转化 Trick]
1584 加权约数和 题意:求\(\sum_{i=1}^{N} \sum_{j=1}^{N} {\max(i,j)\cdot \sigma(i\cdot j)}\) 多组数据\(n \le 10^6, ...
- 51nod 1584 加权约数和 约数和函数小trick 莫比乌斯反演
LINK:加权约数和 我曾经一度认为莫比乌斯反演都是板子题. 做过这道题我认输了 不是什么东西都是板子. 一个trick 设\(s(x)\)为x的约数和函数. 有 \(s(i\cdot j)=\sum ...
- [51Nod 1584] 加权约数和
Description 在整理以前的试题时,他发现了这样一道题目:"求 \(\sum\sigma(i)\),其中 \(1≤i≤N\),\(σ(i)\) 表示 \(i\) 的约数之和.&quo ...
- 51nod 1584加权约数和
学到了好多东西啊这题... https://blog.csdn.net/sdfzyhx/article/details/72968468 #include<bits/stdc++.h> u ...
- [51 Nod 1584] 加权约数和
题意 求∑i=1N∑j=1Nmax(i,j)⋅σ1(ij)\large \sum_{i=1}^N\sum_{j=1}^Nmax(i,j)\cdot\sigma_1(ij)i=1∑Nj=1∑Nmax ...
- Solution -「51nod 1584」加权约数和
\(\mathcal{Description}\) Link. 令 \(\sigma(n)\) 为 \(n\) 的约数之和.求: \[\sum_{i=1}^n\sum_{j=1}^n\max\ ...
- T1加权像(T1 weighted image,T1WI)
T1加权成像(T1-weighted imaging,T1WI)是指这种成像方法重点突出组织纵向弛豫差别,而尽量减少组织其他特性如横向弛豫等对图像的影响. 弛豫:物理用语,从某一个状态恢复到平衡态的过 ...
随机推荐
- webstorm 调出project
Alt+1就能弹出窗口面板. 视图-工具窗口-Project 删除项目 Click File > Close project From Recent projects, select pr ...
- 使用dev-tool定位页面性能瓶颈
这是部门同事的一次内部分享,听完后受益颇多,趁着记忆还算新鲜,赶紧记录一波. 从 dev-tool 看页面 parse 过程 时间都去哪儿了 当浏览器发送一个请求到接受所有响应数据截止,这个过程发生了 ...
- Ubuntu“无法打开锁文件(Could not get lock)”问题解决
用apt-get安装软件时提示: 无法获得锁 /var/lib/dpkg/lock - open(11:资源暂时不可用) 无法锁定管理目录(/var/lib/dpkg/),是否有其他进程正占用它? 其 ...
- 【10】JMicro微服务-API网关
如非授权,禁止用于商业用途,转载请注明出处作者:mynewworldyyl 往下看前,建议完成前面1到9小节 1. Api网关基本特性: Api网关作为对外网提供服务的基本入口,地位类似于NGINX, ...
- Nginx Web服务(一)
一.Nginx原理介绍 1.1:什么是Nginx Nginx是一个开源的,支持高性能.高并发的WWW服务和代理服务软件 1.2:Nginx的功能特点及应用场合 ① 支持高并发:能支持几万并发连接,特别 ...
- js delete删除对象属性,delete删除不了变量及原型链中的变量
js delete删除对象属性,delete删除不了变量及原型链中的变量 一.delete删除对象属性 function fun(){ this.name = 'gg'; } var obj = ne ...
- Maven与Hudson集成
Hudson是一款优秀的持续集成产品,本文阐述Maven于Hudson的集成 Hudson的下载和安装 Hudson有两种安装模式,1:自运行(Hudson内建netty容器),2:放到如tomc ...
- .Net WEB 程序员需要掌握的技能
原文链接:http://deshui.wang/%E6%8A%80%E6%9C%AF/2015/05/12/net-study-road 基础部分 C# 基础语法 OOP的概念,面向对象的理解 继承 ...
- web与app测试的区别
单纯从功能测试的层面上来讲的话,APP 测试.web 测试 在流程和功能测试上是没有区别的. 系统架构方面: web项目,一般都是b/s架构,基于浏览器的 app项目,则是c/s的,必须要有客户端,用 ...
- 小程序api-01-abcdefg
目录-abcdefg wx.scanCode(OBJECT) 调起客户端扫码界面,扫码成功后返回对应的结果 wx.scanCode({ success: (res) => { console ...