一通正常的莫比乌斯反演后,我们只需要求出g(n)=Σf(d)*μ(n/d)的前缀和就好了。

  考虑怎么求g(n)。当然是打表啊。设n=∏piai,n/d=∏pibi 。显然若存在bi>1则这个d没有贡献。考虑bi为0和1两种情况。如果只看ai最小的质因子的选取情况,会发现大部分情况下其是0还是1,对f的取值是没有影响的,但会使μ取反,于是就抵消为0。而特殊情况即为所有ai均相同,此时若所有bi都取1会使f减少。与一般情况比较可以得到此时g(n)=(-1)质因子个数+1

  然后就可以线性筛了。记录一下n去掉最小质因子后的数及最小质因子的幂次就可以了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 10000010
int T,prime[N],f[N],p[N],c[N],v[N],cnt=;
bool flag[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3309.in","r",stdin);
freopen("bzoj3309.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
flag[]=1;p[]=;c[]=;f[]=;
for (int i=;i<=N-;i++)
{
if (!flag[i]) prime[++cnt]=i,p[i]=,c[i]=,f[i]=;
for (int j=;j<=cnt&&prime[j]*i<=N-;j++)
{
int t=prime[j]*i;
flag[t]=;
if (i%prime[j]==)
{
p[t]=p[i];
c[t]=c[i]+;
if (c[p[i]]==) f[t]=;
else f[t]=(c[t]==c[p[i]]?-f[p[i]]:);
break;
}
p[t]=i;
c[t]=;
if (c[i]==) f[t]=;
else f[t]=(c[i]==?-f[i]:);
}
}
for (int i=;i<=N-;i++) f[i]+=f[i-];
while (T--)
{
int n=read(),m=read();
long long ans=;
for (int i=;i<=min(n,m);i++)
{
int t=min(n/(n/i),m/(m/i));
ans+=1ll*(f[t]-f[i-])*(n/i)*(m/i);
i=t;
}
printf(LL,ans);
}
return ;
}

BZOJ3309 DZY Loves Math(莫比乌斯反演+线性筛)的更多相关文章

  1. [BZOJ3309]DZY Loves Math(莫比乌斯反演+线性筛)

    $\sum\limits_{T=1}^{n}\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum\limits_{d|T}f(d)\mu(\fr ...

  2. 【BZOJ3309】DZY Loves Math 莫比乌斯反演+线性筛(好题)

    [BZOJ3309]DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10 ...

  3. 【bzoj3309】DZY Loves Math 莫比乌斯反演+线性筛

    Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b, ...

  4. BZOJ 3309: DZY Loves Math [莫比乌斯反演 线性筛]

    题意:\(f(n)\)为n的质因子分解中的最大幂指数,求\(\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d| ...

  5. 【BZOJ】3309: DZY Loves Math 莫比乌斯反演优化

    3309: DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007) ...

  6. bzoj 3309 DZY Loves Math 莫比乌斯反演

    DZY Loves Math Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1303  Solved: 819[Submit][Status][Dis ...

  7. BZOJ3309 DZY Loves Maths 莫比乌斯反演、线性筛

    传送门 推式子(默认\(N \leq M\)): \(\begin{align*} \sum\limits_{i=1}^N \sum\limits_{j=1}^Mf(gcd(i,j)) & = ...

  8. 【BZOJ3309】DZY Loves Math - 莫比乌斯反演

    题意: 对于正整数n,定义$f(n)$为$n$所含质因子的最大幂指数.例如$f(1960)=f(2^3 * 5^1 * 7^2)=3$,$f(10007)=1$,$f(1)=0$. 给定正整数$a,b ...

  9. BZOJ 3309 DZY Loves Math ——莫比乌斯反演

    枚举$d=gcd(i,j)$ 然后大力反演 ——来自Popoqqq的博客. 然后大力讨论后面的函数的意义即可. http://blog.csdn.net/popoqqq/article/details ...

  10. bzoj 3309 DZY Loves Math —— 莫比乌斯反演+数论分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 凭着上课所讲和与 Narh 讨论推出式子来: 竟然是第一次写数论分块!所以迷惑了半天: ...

随机推荐

  1. python 模块之 bisect

    python一个有趣的模块,bisect,感觉挺有趣,怎么有趣呢,下面来给你道来. 我们先生成一个list data=[4,8,7,1] data.sort() 打印这个list [1,4,7,8] ...

  2. 为什么 Action/ViewController/ProperttyEditor不可见或不可用?

    英文版:https://documentation.devexpress.com/eXpressAppFramework/112818/Concepts/Extend-Functionality/De ...

  3. Qt-网易云音乐界面实现-4 实现推荐列表和我的音乐列表,重要在QListWidget美化

    来标记下这次我么实现的部分 这次我们来是试下这部分功能,来对比一下,左边是原生,右面是我写的,按着模仿的海可以哈,就有有的资源不是一样了,因为我连抠图都懒得扣了了 好了,现在就是我的是先过程了,主要教 ...

  4. java基础---类加载和对象创建过程

    类中可以存在的成员: class A{ 静态成员变量: 非静态成员变量: 静态函数: 非静态函数: 构造函数 A(..){...} 静态代码块 static{...} 构造代码块 {...} } 类加 ...

  5. 傻瓜式搭建私有云就用这两组合:宝塔+kodexplorer

    介绍 宝塔面板:是一款linux/windows平台均可使用的服务器管理软件,自带环境包,主要基于centos操作系统,可一键包装nginx.apache.php.mysql.pureftpd.php ...

  6. FFT(快速傅里叶变换)算法详解

    多项式的点值表示(Point Value Representation) 设多项式的系数表示(Coefficient Representation): \[ \begin{align*} \mathr ...

  7. python-两个筛子数据可视化(直方图)

    """ 作者:zxj 功能:模拟掷骰子,两个筛子数据可视化 版本:3.0 日期:19/3/24 """ import random impo ...

  8. Windows 8.1 "计算机" 中文件夹清理

    计算机 win8.1 也叫这台电脑 清理文件夹 保留磁盘分区图标 注册表清理 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\ ...

  9. rev命令详解

    基础命令学习目录首页 rev命令将文件中的每行内容以字符为单位反序输出,即第一个字符最后输出,最后一个字符最先输出,依次类推. #cat a.txt wo shi mcw, nihao how do ...

  10. du命令详解

    基础命令学习目录首页 原文链接:https://blog.csdn.net/linuxnews/article/details/51207738 导读du命令是检查硬盘使用情况,统计文件或目录及子目录 ...