BZOJ3309 DZY Loves Math(莫比乌斯反演+线性筛)
一通正常的莫比乌斯反演后,我们只需要求出g(n)=Σf(d)*μ(n/d)的前缀和就好了。
考虑怎么求g(n)。当然是打表啊。设n=∏piai,n/d=∏pibi 。显然若存在bi>1则这个d没有贡献。考虑bi为0和1两种情况。如果只看ai最小的质因子的选取情况,会发现大部分情况下其是0还是1,对f的取值是没有影响的,但会使μ取反,于是就抵消为0。而特殊情况即为所有ai均相同,此时若所有bi都取1会使f减少。与一般情况比较可以得到此时g(n)=(-1)质因子个数+1。
然后就可以线性筛了。记录一下n去掉最小质因子后的数及最小质因子的幂次就可以了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 10000010
int T,prime[N],f[N],p[N],c[N],v[N],cnt=;
bool flag[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3309.in","r",stdin);
freopen("bzoj3309.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
flag[]=1;p[]=;c[]=;f[]=;
for (int i=;i<=N-;i++)
{
if (!flag[i]) prime[++cnt]=i,p[i]=,c[i]=,f[i]=;
for (int j=;j<=cnt&&prime[j]*i<=N-;j++)
{
int t=prime[j]*i;
flag[t]=;
if (i%prime[j]==)
{
p[t]=p[i];
c[t]=c[i]+;
if (c[p[i]]==) f[t]=;
else f[t]=(c[t]==c[p[i]]?-f[p[i]]:);
break;
}
p[t]=i;
c[t]=;
if (c[i]==) f[t]=;
else f[t]=(c[i]==?-f[i]:);
}
}
for (int i=;i<=N-;i++) f[i]+=f[i-];
while (T--)
{
int n=read(),m=read();
long long ans=;
for (int i=;i<=min(n,m);i++)
{
int t=min(n/(n/i),m/(m/i));
ans+=1ll*(f[t]-f[i-])*(n/i)*(m/i);
i=t;
}
printf(LL,ans);
}
return ;
}
BZOJ3309 DZY Loves Math(莫比乌斯反演+线性筛)的更多相关文章
- [BZOJ3309]DZY Loves Math(莫比乌斯反演+线性筛)
$\sum\limits_{T=1}^{n}\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum\limits_{d|T}f(d)\mu(\fr ...
- 【BZOJ3309】DZY Loves Math 莫比乌斯反演+线性筛(好题)
[BZOJ3309]DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10 ...
- 【bzoj3309】DZY Loves Math 莫比乌斯反演+线性筛
Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b, ...
- BZOJ 3309: DZY Loves Math [莫比乌斯反演 线性筛]
题意:\(f(n)\)为n的质因子分解中的最大幂指数,求\(\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d| ...
- 【BZOJ】3309: DZY Loves Math 莫比乌斯反演优化
3309: DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007) ...
- bzoj 3309 DZY Loves Math 莫比乌斯反演
DZY Loves Math Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1303 Solved: 819[Submit][Status][Dis ...
- BZOJ3309 DZY Loves Maths 莫比乌斯反演、线性筛
传送门 推式子(默认\(N \leq M\)): \(\begin{align*} \sum\limits_{i=1}^N \sum\limits_{j=1}^Mf(gcd(i,j)) & = ...
- 【BZOJ3309】DZY Loves Math - 莫比乌斯反演
题意: 对于正整数n,定义$f(n)$为$n$所含质因子的最大幂指数.例如$f(1960)=f(2^3 * 5^1 * 7^2)=3$,$f(10007)=1$,$f(1)=0$. 给定正整数$a,b ...
- BZOJ 3309 DZY Loves Math ——莫比乌斯反演
枚举$d=gcd(i,j)$ 然后大力反演 ——来自Popoqqq的博客. 然后大力讨论后面的函数的意义即可. http://blog.csdn.net/popoqqq/article/details ...
- bzoj 3309 DZY Loves Math —— 莫比乌斯反演+数论分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 凭着上课所讲和与 Narh 讨论推出式子来: 竟然是第一次写数论分块!所以迷惑了半天: ...
随机推荐
- SpringBoot日记——登录与拦截器篇
之前的文章我们把登录页写了出来,但是想要让登录现实他的基本功能,要如何做呢?本篇文章就来帮你实现第一步,让登录页对账号密码做校验,并且完成登录跳转. LoginController 1. 要实现登录, ...
- Kali Linux菜单中各工具功能大全
各工具kali官方简介(竖排):https://tools.kali.org/tools-listing 名称 类型 使用模式 功能 功能评价 dmitry 信息收集 whois查询/子域名收集/ ...
- log4cpp简单使用及踩到的坑
log4cpp是log4j的一个扩展, C++开发者可用该库记录日志,可输出到终端,亦可保存到文件. 下面简单demo展示如何输出日志到输出终端. #include <iostream> ...
- jmeter线程组介绍
Jmeter中的测试计划是一直有的,但可以在右侧修改名字,要开始做具体测试设计前,都需要在测试计划下边添加一个线程组,添加路径为鼠标捕获测试计划后,点击鼠标右键->添加->Threads( ...
- 腾讯hr面
腾讯hr面面经 20181018 寒暄几句 hr自我介绍 hr介绍面试和最后出结果的时间周期 进入主题 自我介绍 考研成绩专业第一 聊考研(考研的经过.考研和保研) 本科成绩 考研成绩超长发挥还是正常 ...
- ubuntu添加国内源
安装Ubuntu 18.04后,使用国外源太慢了,修改为国内源会快很多. 修改阿里源为Ubuntu 18.04默认的源 备份/etc/apt/sources.list#备份cp /etc/apt/so ...
- 【python 2.7】获取外部参数
import sys res_0 = sys.argv[0] res_1 = sys.argv[1] res_2 = sys.argv[2] print res_0 print res_1 print ...
- PHP has encountered an Access Violation at 01F4A622解决方法
php搭建的网站出现以下问题的解决方法分享: Z-blog,DedeCMS,Dsicuz!,PhpWind,PhpCMS,帝国CMS等都有可能出现php访问冲突问题. 今天访问网站发现出现了一个错误& ...
- 【RL系列】Multi-Armed Bandit问题笔记
这是我学习Reinforcement Learning的一篇记录总结,参考了这本介绍RL比较经典的Reinforcement Learning: An Introduction (Drfit) .这本 ...
- centos6.9+lnmp1.5环境部署swoole记录
hiredis下载地址:https://github.com/redis/hiredis/releasesunzip hiredis-v0.13.3.zipmake -jsudo make insta ...