一通正常的莫比乌斯反演后,我们只需要求出g(n)=Σf(d)*μ(n/d)的前缀和就好了。

  考虑怎么求g(n)。当然是打表啊。设n=∏piai,n/d=∏pibi 。显然若存在bi>1则这个d没有贡献。考虑bi为0和1两种情况。如果只看ai最小的质因子的选取情况,会发现大部分情况下其是0还是1,对f的取值是没有影响的,但会使μ取反,于是就抵消为0。而特殊情况即为所有ai均相同,此时若所有bi都取1会使f减少。与一般情况比较可以得到此时g(n)=(-1)质因子个数+1

  然后就可以线性筛了。记录一下n去掉最小质因子后的数及最小质因子的幂次就可以了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 10000010
int T,prime[N],f[N],p[N],c[N],v[N],cnt=;
bool flag[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3309.in","r",stdin);
freopen("bzoj3309.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
flag[]=1;p[]=;c[]=;f[]=;
for (int i=;i<=N-;i++)
{
if (!flag[i]) prime[++cnt]=i,p[i]=,c[i]=,f[i]=;
for (int j=;j<=cnt&&prime[j]*i<=N-;j++)
{
int t=prime[j]*i;
flag[t]=;
if (i%prime[j]==)
{
p[t]=p[i];
c[t]=c[i]+;
if (c[p[i]]==) f[t]=;
else f[t]=(c[t]==c[p[i]]?-f[p[i]]:);
break;
}
p[t]=i;
c[t]=;
if (c[i]==) f[t]=;
else f[t]=(c[i]==?-f[i]:);
}
}
for (int i=;i<=N-;i++) f[i]+=f[i-];
while (T--)
{
int n=read(),m=read();
long long ans=;
for (int i=;i<=min(n,m);i++)
{
int t=min(n/(n/i),m/(m/i));
ans+=1ll*(f[t]-f[i-])*(n/i)*(m/i);
i=t;
}
printf(LL,ans);
}
return ;
}

BZOJ3309 DZY Loves Math(莫比乌斯反演+线性筛)的更多相关文章

  1. [BZOJ3309]DZY Loves Math(莫比乌斯反演+线性筛)

    $\sum\limits_{T=1}^{n}\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum\limits_{d|T}f(d)\mu(\fr ...

  2. 【BZOJ3309】DZY Loves Math 莫比乌斯反演+线性筛(好题)

    [BZOJ3309]DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10 ...

  3. 【bzoj3309】DZY Loves Math 莫比乌斯反演+线性筛

    Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b, ...

  4. BZOJ 3309: DZY Loves Math [莫比乌斯反演 线性筛]

    题意:\(f(n)\)为n的质因子分解中的最大幂指数,求\(\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d| ...

  5. 【BZOJ】3309: DZY Loves Math 莫比乌斯反演优化

    3309: DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007) ...

  6. bzoj 3309 DZY Loves Math 莫比乌斯反演

    DZY Loves Math Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1303  Solved: 819[Submit][Status][Dis ...

  7. BZOJ3309 DZY Loves Maths 莫比乌斯反演、线性筛

    传送门 推式子(默认\(N \leq M\)): \(\begin{align*} \sum\limits_{i=1}^N \sum\limits_{j=1}^Mf(gcd(i,j)) & = ...

  8. 【BZOJ3309】DZY Loves Math - 莫比乌斯反演

    题意: 对于正整数n,定义$f(n)$为$n$所含质因子的最大幂指数.例如$f(1960)=f(2^3 * 5^1 * 7^2)=3$,$f(10007)=1$,$f(1)=0$. 给定正整数$a,b ...

  9. BZOJ 3309 DZY Loves Math ——莫比乌斯反演

    枚举$d=gcd(i,j)$ 然后大力反演 ——来自Popoqqq的博客. 然后大力讨论后面的函数的意义即可. http://blog.csdn.net/popoqqq/article/details ...

  10. bzoj 3309 DZY Loves Math —— 莫比乌斯反演+数论分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 凭着上课所讲和与 Narh 讨论推出式子来: 竟然是第一次写数论分块!所以迷惑了半天: ...

随机推荐

  1. 使用web api开发微信公众号,调用图灵机器人接口(二)

    此文将分两篇讲解,主要分为以下几步 签名校验; 首次提交验证申请; 接收消息; 被动响应消息(返回XML); 映射图灵消息及微信消息; 此篇为第二篇. 被动响应消息(返回XML) 上一篇中,我们已经可 ...

  2. Spring学习(十九)----- Spring的五种事务配置详解

    前段时间对Spring的事务配置做了比较深入的研究,在此之间对Spring的事务配置虽说也配置过,但是一直没有一个清楚的认识.通过这次的学习发觉Spring的事务配置只要把思路理清,还是比较好掌握的. ...

  3. PowerDesigner中翻转生成PDM图时把Name属性变成注释(转)

    在pd里面运行下面这段代码'******************************************************************************'* File: ...

  4. 常见的浏览器端的存储技术:cookie

    工作原理: cookie是存在用户硬盘中,用户每次访问站点时,Web应用程序都可以读取Cookie包含的信息.当用户再次访问这个站点时,浏览器就会在本地硬盘上查找与该 URL 相关联的 Cookie. ...

  5. charles工具教程

    本文的内容主要包括: Charles 的简介 如何安装 Charles 将 Charles 设置成系统代理 Charles 主界面介绍 过滤网络请求 截取 iPhone 上的网络封包 截取 Https ...

  6. opengl-glsl

    GLSL 着色器是使用一种叫GLSL的类C语言写成的.GLSL是为图形计算量身定制的,它包含一些针对向量和矩阵操作的有用特性. 着色器的开头总是要声明版本,接着是输入和输出变量.uniform和mai ...

  7. Hbase基本用法

    hbase 一些重要的解释(杂) 访问habse三种方式 访问hbase table中的行,只有三种方式: 1 通过单个row key访问 2 通过row key的range 3 全表扫描 Row k ...

  8. Flash导出安卓端apk

    最近外甥女在学校做了一个演示视频,基于flash做的,希望小舅给她导出成可以运行在pc/android端的可执行程序.看了下过程还是蛮复杂的,还只能一天时间.重新照葫芦画瓢做一款是来不及了,由于以前基 ...

  9. vue mock(模拟后台数据) +axios 简单实例(二)

    需装上axios,build文件夹中webpack.dev.conf.js文件添加上vue mock配置的东东,  如,继(一) //组件<template> <div> &l ...

  10. Spring入门学习笔记(3)——事件处理类

    目录 Spring中的事件处理 Spring内建事件 监听Context事件 Example 自定义Spring事件 Spring中的事件处理 ApplicationContext 是Spring的核 ...