解题报告:可以说是一个纯数学题,要用到二元一次和二元二次解方程,我们假设[a,b]这个区间的所有的数的和是N,由此,我们可以得到以下公式:

(b-a+1)*(a+b) / 2 = N;很显然,这是一个二元一次方程,如果可以解出这个方程里的a,b就可以了,N是已知的,那么可以怎么一个公式怎么解二元方程呢?这里有两种方法可以选择,第一种是可以枚举a = 1,2,3.....,一直枚举到N/2,a是不可能大于N/2,这个你可以自己证明一下,但是这样做的缺点就是数据量还是太大了,N/2任然达到了10的八次方级别,所以这种方法不行(我一开始就是用这种枚举的),然后就是第二种,很明显,我们可以看到,a到b的区间的长度一定是唯一的,就是说如果区间的长度固定,a和b 的值也就固定了,经过证明之后,发现,这种枚举的方法,只需要从0枚举到sqrt(2*N),很显然,这样将运算量从10的九次方一下子降到了10的4.5次方,数据就可以过了。我们可以设区间的长度为l,首先有:l = b-a;再加上(b-a+1)*(a+b) / 2 = N这个公式,我们可以分别求出a和b,但是 这个a和b求出来不一定是满足要求的,很简单,因为我们枚举的从1到sqrt(2*N),中间有些长度的区间可能就没有,不过,还好,我们可以通过判断算出来的a和b的结果是否是整数并且大于0来判断这一对a和b的解是否是可行解。

 #include<cstdio>
#include<iostream>
#include<cmath>
using namespace std;
double N,M;
int judge(double x) {
if(x <= )
return ;
return x - (int)x == ;
}
int main() {
while(scanf("%lf%lf",&N,&M),N,M) {
double n = min(N,M);
for(double i = (int)sqrt(2.0*n)+;i >= ;--i) {
double a = (2.0 * n - i*i - i) / (*i+);
double b = ( * n + i*i + i) / (2.0 * i + 2.0);
if(judge(a) && judge(b))
printf("[%.0lf,%.0lf]\n",a,b);
}
printf("\n");
}
return ;
}

HDU 2058 The sum problem 数学题的更多相关文章

  1. HDU 2058 The sum problem(枚举)

    The sum problem Problem Description Given a sequence 1,2,3,......N, your job is to calculate all the ...

  2. hdu 2058 The sum problem(数学题)

    一个数学问题:copy了别人的博客 #include<cstdio> #include<cstdlib> #include<cmath> int main() { ...

  3. 题解报告:hdu 2058 The sum problem

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2058 问题描述 给定一个序列1,2,3,...... N,你的工作是计算所有可能的子序列,其子序列的总 ...

  4. hdu 2058 The sum problem(简单因式分解,,)

    Problem Description Given a sequence 1,2,3,......N, your job is to calculate all the possible sub-se ...

  5. HDU 2058 The sum problem

    传送门 Description Given a sequence 1,2,3,......N, your job is to calculate all the possible sub-sequen ...

  6. HDU - 2058 The sum problem(思路题)

    题目: Given a sequence 1,2,3,......N, your job is to calculate all the possible sub-sequences that the ...

  7. HDU 2058 The sum problem (数学+暴力)

    题意:给定一个N和M,N表示从1到N的连续序列,让你求在1到N这个序列中连续子序列的和为M的子序列区间. 析:很明显最直接的方法就是暴力,可是不幸的是,由于N,M太大了,肯定会TLE的.所以我们就想能 ...

  8. hdu 4961 Boring Sum(数学题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4961 Problem Description Number theory is interesting ...

  9. HDOJ 2058 The sum problem

    Problem Description Given a sequence 1,2,3,--N, your job is to calculate all the possible sub-sequen ...

随机推荐

  1. (二)Jmeter各部件的作用

    JMeter主要组件介绍 1.测试计划(Test Plan)是使用 JMeter 进行测试的起点,它是其它 JMeter 测试元件的容器. 2.线程组(Thread Group)代表一定数量的并发用户 ...

  2. 使用docker-compose编排django、mysql实战

    背景: 本萌最近在部署自己开发的项目的时候发现同一套代码上传到服务器上后,部分功能莫名其妙的有点问题,服务器的各项配置都没有做过变动,所以想把项目转战到docker. 奈何刚接触docker,很多地方 ...

  3. js遍历数组和遍历对象

    可以用for in来遍历对象,具体内容如下: <script type="text/javascript">             var objs = {      ...

  4. 【译】关于vertical-align你应知道的一切

    原文地址:Vertical-Align: All You Need To Know 通常我们需要垂直对齐并排的元素. CSS提供了一些可实现的方法:有时我用浮动float来解决,有时用position ...

  5. UVAlive4255_Guess

    题目很好很有意思. 告诉你n个序列中,任意一个连续子序列的和与0相比较的结果. 构造一个满足条件的序列. 对于从x->y这一段的和,如果大于0,那么sum[x]>sum[y-1],显然我们 ...

  6. oracle 11g 从 dmp 文件中导出 sql 代码 的方法.

    impdp sys/password full=y dumpfile=bg.dmp nologfile=y sqlfile=bg_dmp.sql 备注: bg.dmp 是 dmp 文件,   bg_d ...

  7. c++11 函数模板的默认模板参数

    c++11 函数模板的默认模板参数 #define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <string> ...

  8. STL stack 容器

    STL stack 容器 Stack简介 stack是堆栈容器,是一种“先进后出”的容器.      stack是简单地装饰deque容器而成为另外的一种容器.      #include <s ...

  9. JS的语法

    1.语句和表达式 var a = 3 * 6; var b = a; b; 这里,3 * 6是一个表达式(结果为18).第二行的a也是一个表达式,第三行的b也是.表达式a和b的结果值都是18. var ...

  10. Luogu 1220 关路灯(动态规划)

    Luogu 1220 关路灯(动态规划) Description 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项 ...