两个变量之间存在确定性:关系和不确定关系(会存在一定的波动范围),就好比你的亲生母亲绝对只有一个,而你的亲叔叔可能有好几个(可以在1叔—4叔之间波动)

相关性一般分为   1:强正相关关系  (一个值会随着另一个值的增加而增加,增加幅度很明显)

2:弱正相关关系   (一个值会随着另一个值的增加而稍增加,增加幅度不太明显,但是有变化趋势)

3:负正相关关系  (一个值会随着另一个值的增加而减少,减少幅度很明显)

4:弱负相关关系   (同弱正相关关系一个原理)

5:非线性相关关系 (说明两个变量之间没有明显的线性关系,却存在着某种非线性关系,比如:曲线,S型,Z型等等)

6:不相关   (两者之间,没有相关性)

两变量的相关性研究,相对来说,比较容易,如果是多变量之间的相关性研究,会比较复杂一些,因为要确定哪些是显著的,哪些是不显著的,以及相关系数的大小(强弱等),深入研究,可能会涉及:回归分析 和 因子分析。

废话说了一堆,下面开始进入主题,以“肺活量数据”为例,分析体重和肺活量之间是否存在相关性,以及相关性的强弱等,数据如下所示:

先对两个变量之间的关系进行初步评估,采用“图形构建器“进行初步评估,打开SPSS,点击”图形——图标构建程序——选择散点图

进入如下所示界面:

选择“简单散点图” 将“简单散点图”拖动放入 上面右侧的“空白处” 将 体重变量拖入右侧作为X轴, 将肺活量拖入右侧作为Y轴,得到如下所示的界面:

点击确定,会得到“相关性的散点图”,如下所示:

从上图可以看出,两个变量之间,很明显存在相关性,随着“体重”的增加,肺活量也呈现出“增加”的趋势 (属于 正相关关系),下面进一步研究两者相关性的强弱

点击“分析——相关——双变量,进入如下所示的界面:

将“体重”和“肺活量”两个变量,分别拖入右侧框内,在相关系数 一栏中,勾选“pearson,   kendall   以及spearman 三个选项

显著性检验中,随便勾选哪一个都可以,因为我们已经确立两者之间呈现正相关关系,所有,采用“单侧检验”也是可以的,勾选“标记显著性相关”点击确定,得到如下结果:

结果分析:

1:从相关性的表格中可以看出:在0.01水平下,显著相关,(因为0.00<0.01)并且呈现出明显的“正相关关系”

2:从相关系数表中可以看出:kendall  ,spearman 两种方式都呈现出相关性,

pearson相关系数采用的是“参数统计方法” 后面的 kendall, spearman 采用的是“非参数统计方法”。

这三种不同的形式,得出的相关系数值也不同,分别为:0.736, 0.594, 0.744 三个值,分别代表了相关强弱

SPSS-两变量相关性分析的更多相关文章

  1. 使用R进行相关性分析

    基于R进行相关性分析 一.相关性矩阵计算: [1] 加载数据: >data = read.csv("231-6057_2016-04-05-ZX_WD_2.csv",head ...

  2. 基于R进行相关性分析--转载

    https://www.cnblogs.com/fanling999/p/5857122.html 一.相关性矩阵计算: [1] 加载数据: >data = read.csv("231 ...

  3. R_Studio(学生成绩)数据相关性分析

    对“Gary.csv”中的成绩数据进行统计量分析 用cor函数来计算相关性,method默认参数是用pearson:并且遇到缺失值,use默认参数everything,结果会是NA 相关性分析 当值r ...

  4. matlab 相关性分析

    Pearson相关系数 考察两个事物(在数据里我们称之为变量)之间的相关程度,简单来说就是衡量两个数据集合是否在一条线上面.其计算公式为: 或或 N表示变量取值的个数. 相关系数r的值介于–1与+1之 ...

  5. python数据相关性分析 (计算相关系数)

    #-*- coding: utf-8 -*- #餐饮销量数据相关性分析 计算相关系数 from __future__ import print_function import pandas as pd ...

  6. Spark MLlib基本算法【相关性分析、卡方检验、总结器】

    一.相关性分析 1.简介 计算两个系列数据之间的相关性是统计中的常见操作.在spark.ml中提供了很多算法用来计算两两的相关性.目前支持的相关性算法是Pearson和Spearman.Correla ...

  7. for循环中i--的妙用 及 两变量互换数值的问题

    int[] array = new int[4]; for(int i = 0; i < array.length; i++){ array[i] = (int)(Math.random() * ...

  8. DEBUG模式下, 内存中的变量地址分析

    测试函数的模板实现 /// @file my_template.h /// @brief 测试数据类型用的模板实现 #ifndef MY_TEMPLATE_H_2016_0123_1226 #defi ...

  9. Python文章相关性分析---金庸武侠小说分析

    百度到<金庸小说全集 14部>全(TXT)作者:金庸 下载下来,然后读取内容with open('names.txt') as f: data = [line.strip() for li ...

随机推荐

  1. mysql使用一条sql删除多条数据

    使用in delete from course where chour in(55,56,57); course:表名 chour:字段 55,56,57数据

  2. 在JSP中,使用get提交方式出现乱码时,为什么要使用new String(s.getBytes("iso-8859-1"),"utf-8");?

    最近在学JSP,在学习处理get方式提交数据出现乱码问题的时候,对其中的一个解决方法new String(s.getBytes("iso-8859-1"),"utf-8& ...

  3. 回调(CallBack)

    又名钩子函数(C语言里Hook) 不知道如何实现,可以写个回调, 相当于提供个钩子,让别人来挂东西,来实现. 其实就是用多态,实现了分离 . package cn.bjsxt.oop.callback ...

  4. 批量导入数据(Mysql)报MySQL server has gone away 问题的解决方法

    问题分析 首先度娘:mysql出现ERROR : (2006, 'MySQL server has gone away') 的问题意思就是指client和MySQL server之间的链接断开了. 造 ...

  5. Python修改文件的两种方法

    目录: 一.以占用内存的方式修改文件 二.以占用硬盘的方式修改文件 引言 文件修改的方法从操作方式上大致可以分为两类,一种是以占用电脑内存的方式,将文件读取到内存中修改再存回硬盘:第二种方法是分别打开 ...

  6. "\\s+"的使用

    详解 "\\s+" 正则表达式中\s匹配任何空白字符,包括空格.制表符.换页符等等, 等价于[ \f\n\r\t\v] \f -> 匹配一个换页 \n -> 匹配一个换 ...

  7. Android Studio 连接天天、海马、逍遥模拟器

    adb connect 127.0.0.1:6555 取消连接 adb disconnect 127.0.0.1:6555 连接海马模拟器(未测试)  adb connect 127.0.0.1:26 ...

  8. 关于Application.DoEvents()==转

    记得第一次使用Application.DoEvents()是为了在加载大量数据时能够有一个数据加载的提示,不至于系统出现假死的现象,当时也没有深入的去研究他的原理是怎样的,结果在很多地方都用上了App ...

  9. Frog and Portal(思维好题)

    Frog and Portal https://hihocoder.com/problemset/problem/1873 时间限制:1000ms 单点时限:1000ms 内存限制:512MB 描述 ...

  10. mysql基本的增删改查和条件语句

    增 insert into 表名(列名,列名......) values("test1",23),("test2",23),("test3" ...