题意:有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,只要两个村庄之间有一条路即可,建造水管距离为坐标之间的欧几里德距离,费用为海拔之差,现在要求方案使得费用与距离的比值最小,很显然,这个题目是要求一棵最优比率生成树。

析:也就是求 r = sigma(x[i] * d) / sigma(x[i] * dist)这个值最小,变形一下就可以得到 d * r - dist <= 0,当r 最小时,取到等号,也就是求最大生成树,然后进行判断,有两种方法,一种是二分,这个题时间长一点,另一种是迭代,这个比较快。

代码如下:

二分:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
#define all 1,n,1
#define FOR(i,x,n) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-4;
const int maxn = 1000 + 10;
const int maxm = 1e5 + 10;
const int mod = 50007;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, -1, 0, 1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
} struct Point{
int x, y, d;
};
Point a[maxn];
double dist[maxn][maxn];
double dis[maxn];
bool vis[maxn]; bool judge(double mid){
ms(vis, 0);
for(int i = 1; i <= n; ++i) dis[i] = -inf;
dis[1] = 0;
double ans = 0;
for(int i = 1; i <= n; ++i){
int mark = -1;
for(int j = 1; j <= n; ++j) if(!vis[j]){
if(mark == -1) mark = j;
else if(dis[j] > dis[mark]) mark = j;
}
if(mark == -1) break;
vis[mark] = 1;
ans += dis[mark];
for(int j = 1; j <= n; ++j) if(!vis[j]){
dis[j] = max(dis[j], dist[j][mark] * mid - abs(a[mark].d - a[j].d));
}
}
return ans >= 0.0;
} int main(){
while(scanf("%d", &n) == 1 && n){
for(int i = 1; i <= n; ++i){
scanf("%d %d %d", &a[i].x, &a[i].y, &a[i].d);
for(int j = 1; j < i; ++j)
dist[i][j] = dist[j][i] = sqrt(sqr(a[i].x*1.-a[j].x) + sqr(a[i].y*1.-a[j].y));
}
double l = 0.0, r = 1e6;
while(r - l > eps){
double m = (l + r) / 2.0;
if(judge(m)) r = m;
else l = m;
}
printf("%.3f\n", l);
}
return 0;
}

 迭代:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
#define all 1,n,1
#define FOR(i,x,n) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-4;
const int maxn = 1000 + 10;
const int maxm = 1e5 + 10;
const int mod = 50007;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, -1, 0, 1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
} struct Point{
int x, y, d;
};
Point a[maxn];
double dist[maxn][maxn];
double dis[maxn];
double A[maxn], B[maxn];
bool vis[maxn]; double judge(double mid){
ms(vis, 0);
for(int i = 1; i <= n; ++i) dis[i] = -inf;
dis[1] = 0; A[1] = B[1] = 0;
double ans = 0, aa = 0, bb = 0;
for(int i = 1; i <= n; ++i){
int mark = -1;
for(int j = 1; j <= n; ++j) if(!vis[j]){
if(mark == -1) mark = j;
else if(dis[j] > dis[mark]) mark = j;
}
if(mark == -1) break;
vis[mark] = 1;
ans += dis[mark];
aa += A[mark];
bb += B[mark];
for(int j = 1; j <= n; ++j) if(!vis[j]){
if(dis[j] < dist[j][mark] * mid - abs(a[mark].d - a[j].d)){
dis[j] = dist[j][mark] * mid - abs(a[mark].d - a[j].d);
A[j] = dist[j][mark];
B[j] = abs(a[mark].d - a[j].d);
}
}
}
return bb / aa;
} int main(){
while(scanf("%d", &n) == 1 && n){
for(int i = 1; i <= n; ++i){
scanf("%d %d %d", &a[i].x, &a[i].y, &a[i].d);
for(int j = 1; j < i; ++j)
dist[i][j] = dist[j][i] = sqrt(sqr(a[i].x*1.-a[j].x) + sqr(a[i].y*1.-a[j].y));
}
double a = 0.0;
while(1){
double b = judge(a);
if(fabs(b - a) < eps){
printf("%.3f\n", a);
break;
}
a = b;
}
}
return 0;
}

  

POJ 2728 Desert King (最优比率树)的更多相关文章

  1. POJ 2728 Desert King 最优比率生成树

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20978   Accepted: 5898 [Des ...

  2. POJ.2728.Desert King(最优比率生成树 Prim 01分数规划 二分/Dinkelbach迭代)

    题目链接 \(Description\) 将n个村庄连成一棵树,村之间的距离为两村的欧几里得距离,村之间的花费为海拔z的差,求花费和与长度和的最小比值 \(Solution\) 二分,假设mid为可行 ...

  3. POJ 2728 Desert King(最优比率生成树, 01分数规划)

    题意: 给定n个村子的坐标(x,y)和高度z, 求出修n-1条路连通所有村子, 并且让 修路花费/修路长度 最少的值 两个村子修一条路, 修路花费 = abs(高度差), 修路长度 = 欧氏距离 分析 ...

  4. POJ 2728 Desert King (最优比例生成树)

    POJ2728 无向图中对每条边i 有两个权值wi 和vi 求一个生成树使得 (w1+w2+...wn-1)/(v1+v2+...+vn-1)最小. 采用二分答案mid的思想. 将边的权值改为 wi- ...

  5. poj 2728 Desert King (最小比例生成树)

    http://poj.org/problem?id=2728 Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissio ...

  6. POJ2728 Desert King —— 最优比率生成树 二分法

    题目链接:http://poj.org/problem?id=2728 Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Subm ...

  7. poj 2728 Desert King (最优比率生成树)

    Desert King http://poj.org/problem?id=2728 Time Limit: 3000MS   Memory Limit: 65536K       Descripti ...

  8. POJ 2728 Desert King(最优比率生成树 01分数规划)

    http://poj.org/problem?id=2728 题意: 在这么一个图中求一棵生成树,这棵树的单位长度的花费最小是多少? 思路: 最优比率生成树,也就是01分数规划,二分答案即可,题目很简 ...

  9. POJ 2728 Desert King ★(01分数规划介绍 && 应用の最优比率生成树)

    [题意]每条路径有一个 cost 和 dist,求图中 sigma(cost) / sigma(dist) 最小的生成树. 标准的最优比率生成树,楼教主当年开场随手1YES然后把别人带错方向的题Orz ...

随机推荐

  1. as3 运算与检查String 是否能够正确转换成数 值

    如果忘了对一个Number 型变量初始化,那么这个变量参与的任何数学运算的结果都是NaN:如果最终结果赋值给有声明类型的变量,那么为该变量的默认值(仅限uint ,int). var a:Number ...

  2. table边框和td的width失效

    table元素有一个属性border,可设置table的边框.这个边框对内部元素有效. 不同于style:border,这个仅仅是外边框. table{ width:60%; border-colla ...

  3. Qt-状态机

    //以下示例是QT示例中的appchooser例子,使用状态机来进行图标的交互. #include <QtCore> #include <QtWidgets> class Pi ...

  4. 回调(CallBack)

    又名钩子函数(C语言里Hook) 不知道如何实现,可以写个回调, 相当于提供个钩子,让别人来挂东西,来实现. 其实就是用多态,实现了分离 . package cn.bjsxt.oop.callback ...

  5. rabbitMQ 常用命令

    启动监控管理器:rabbitmq-plugins enable rabbitmq_management 关闭监控管理器:rabbitmq-plugins disable rabbitmq_manage ...

  6. EasyUI 导出页面到Excel中

    <script type="text/javascript"> <!-- js --> /*================================ ...

  7. HTML的实际演练2

    1.html 换行: 如果你想在不产生新的段落下换行,就使用<br/><p>tishi is a praskdjf<br/>ldkfldj</p> 2. ...

  8. 基于MSAA的QQ界面信息获取的实现

    主要技术(Microsoft Active Accessibility)讲解: 以下是微软对于此技术的说明 Microsoft Active Accessibility Version 2.0 Pur ...

  9. 超薄二维Mo2C晶体

    记者今天从中国科学院金属研究所获悉,该所沈阳材料科学国家(联合)实验室先进炭材料研究部任文才研究组在大尺寸高质量二维过渡族金属碳化物晶体的制备与物性研究方面取得了重要突破.相关成果日前在<自然— ...

  10. ubuntu安装谷歌拼音输入法

    在这篇教程中,我将告诉你如何在ubuntu系统上安装谷歌拼音输入法.谷歌拼音输入法有基于ibus框架的,也有基于fcitx框架的.我只演示fcitx框架下谷歌拼音输入法的安装,因为ibus框架的谷歌拼 ...