【BZOJ4197】【Noi2015】寿司晚宴
Description
为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴。小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴。
在晚宴上,主办方为大家提供了 n−1 种不同的寿司,编号 1,2,3,…,n−1,其中第 i 种寿司的美味度为 i+1 (即寿司的美味度为从 2 到 n)。
现在小 G 和小 W 希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当:小 G 品尝的寿司种类中存在一种美味度为 x 的寿司,小 W 品尝的寿司中存在一种美味度为 y 的寿司,而 x 与 y 不互质。
现在小 G 和小 W 希望统计一共有多少种和谐的品尝寿司的方案(对给定的正整数 p 取模)。注意一个人可以不吃任何寿司。
Input
输入文件的第 1 行包含 2 个正整数 n,p,中间用单个空格隔开,表示共有 n 种寿司,最终和谐的方案数要对 p 取模。
Output
输出一行包含 1 个整数,表示所求的方案模 p 的结果。
Sample Input
3 10000
Sample Output
9
Hint
\(2\le n\le 500\),\(0<p\le 10^9\)。
Solution
首先考虑最直接的状压DP:两个人的选择方案合法,当且仅当两人各自所选编号的质因子无交集。
记\(f[i][s_A][s_B]\)表示当前选到\(i\)号数,一个人选择的数质因子状态为\(s_A\),A另一人为\(s_B\)的总方案数。其中第一维可以省去。
但是500以内的质数还是很多,\(s_A\)和\(s_B\)压不起来,怎么做呢?
考虑每一个数都是由若干个小于等于\(\sqrt {500}\)的质数乘起来,再乘上一个剩余部分\(l\):一个大于\(\sqrt{500}\)的质数或者1得到。我们发现小于等于\(\sqrt{500}\)也就是22.36的质数恰好只有8个,此时\(s\)的大小为256,是可以开得下上述数组的。
处理出所有数包含小于根号质数的状态,并按剩余部分\(l\)从小到大排序。剩余部分为1的数显然可以按上述基础方法直接DP。
接下来,对于剩余部分\(l\)不为1的每一段数。我们发现,两人不可能同时取这一段中的数——要么A不要动,让B自己选择;要么B不要动,让A自己选择。
所以把每一段\(l\)相同的数拉出来DP一次。记\(g_A[s_A][s_B]\)表示只让A取这一段的方案数,\(g_B[s_A][s_B]\)同理。两个DP是独立分开的。枚举该段中每一个数,看某人选了是否不会和另一人冲突,并决定选还是不选。
DP开始前\(g_A[s_A][s_B]=g_B[s_A][s_B]=f[s_A][s_B]\)。该段DP完成后,反过来把走过这一段后的数据更新回\(f\):
\(f[s_A][s_B]=g_A[s_A][s_B]+g_B[s_A][s_B]-f[s_A][s_B]\)。
注意后面要减去一个未DP前的方案数,因为两个\(g\)加起来时,两人都不选的情况总共被算了2次。
从此题我们可以得到一些启发:如果状态压不下,那就应该考虑能否减少状态规模,如找到特殊的元素单独考虑。
Code
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=505,p[9]={0,2,3,5,7,11,13,17,19};
int n,MOD;
int f[260][260],g[2][260][260];
inline int plu(int x,int y){return (x+y)%MOD;}
inline int mul(int x,int y){return 1LL*x*y%MOD;}
inline void upd(int &x,int y){x=plu(x,y);}
inline bool in(int st,int i){return (st>>(i-1))&1;}
inline int bit(int i){return 1<<(i-1);}
struct Data{int x,state,bigp;}d[N];
bool cmp(const Data &a,const Data &b){return a.bigp<b.bigp;}
int main(){
scanf("%d%d",&n,&MOD);
for(int i=2;i<=n;i++){
int x=i,y=0;
for(int i=1;i<=8;i++)
if(x%p[i]==0){
y|=bit(i);
while(x%p[i]==0) x/=p[i];
}
d[i-1]=(Data){i,y,x};
}
sort(d+1,d+1+(n-1),cmp);
f[0][0]=1;
int i,j,all=1<<8;
for(i=1;d[i].bigp==1;i++){
for(int x=all-1;x>=0;x--)
for(int y=all-1;y>=0;y--){
if(!(d[i].state&y))
upd(f[x|d[i].state][y],f[x][y]);
if(!(d[i].state&x))
upd(f[x][y|d[i].state],f[x][y]);
}
}
for(j=i;i<n;){
for(int x=0;x<all;x++)
for(int y=0;y<all;y++)
g[0][x][y]=g[1][x][y]=f[x][y];
for(;j<n&&d[i].bigp==d[j].bigp;j++);
for(;i<j;i++){
for(int x=all-1;x>=0;x--)
for(int y=all-1;y>=0;y--){
if(!(d[i].state&y))
upd(g[0][x|d[i].state][y],g[0][x][y]);
if(!(d[i].state&x))
upd(g[1][x][y|d[i].state],g[1][x][y]);
}
}
for(int x=0;x<all;x++)
for(int y=0;y<all;y++)
f[x][y]=plu(plu(g[0][x][y],g[1][x][y]),-f[x][y]);
}
int ans=0;
for(int x=0;x<all;x++)
for(int y=0;y<all;y++)
upd(ans,f[x][y]);
printf("%d\n",plu(ans,MOD));
return 0;
}
【BZOJ4197】【Noi2015】寿司晚宴的更多相关文章
- [UOJ#129][BZOJ4197][Noi2015]寿司晚宴
[UOJ#129][BZOJ4197][Noi2015]寿司晚宴 试题描述 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司 ...
- [BZOJ4197][Noi2015]寿司晚宴
4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 412 Solved: 279[Submit][Status] ...
- BZOJ4197 [Noi2015]寿司晚宴 【状压dp】
题目链接 BZOJ4197 题解 两个人选的数都互质,意味着两个人选择了没有交集的质因子集合 容易想到将两个人所选的质因子集合作为状态\(dp\) \(n\)以内质数很多,但容易发现\(\sqrt{n ...
- bzoj4197 [Noi2015]寿司晚宴——状压DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4197 首先,两个人选的数都互质可以看作是一个人选了一个数,就相当于选了一个质因数集合,另一个 ...
- 【BZOJ4197】[Noi2015]寿司晚宴 状压DP+分解质因数
[BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴 ...
- 【BZOJ-4197】寿司晚宴 状压DP
4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 694 Solved: 440[Submit][Status] ...
- BZOJ 4197: [Noi2015]寿司晚宴( dp )
N^0.5以内的质数只有8个, dp(i, j, k)表示用了前i个大质数(>N^0.5), 2人选的质数(<=N^0.5)集合分别为j, k时的方案数. 转移时考虑当前的大质数p是给哪个 ...
- BZOJ_4197_[Noi2015]寿司晚宴_状态压缩动态规划
BZOJ_4197_[Noi2015]寿司晚宴_状态压缩动态规划 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被 ...
- [NOI2015]寿司晚宴 --- 状压DP
[NOI2015]寿司晚宴 题目描述 为了庆祝NOI的成功开幕,主办方为大家准备了一场寿司晚宴. 小G和小W作为参加NOI的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了n−1种不同的寿 ...
- BZOJ 4197: [Noi2015]寿司晚宴 状态压缩 + 01背包
4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec Memory Limit: 512 MB Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿 ...
随机推荐
- [转载]MySQL面试题
1.MySQL的复制原理以及流程基本原理流程,3个线程以及之间的关联:(1)主:binlog线程——记录下所有改变了数据库数据的语句,放进master上的binlog中:(2)从:io线程——在使用s ...
- k8s踩坑记第1篇--rc无法创建
六一快乐!!! 什么是k8s,我不想解释,百度资料有很多,本系列只踩坑,不科普. 问题描述: 做Hello World的例子,结果get pods一直显示没有资源? 应用配置代码: apiVersio ...
- 如何配置php客户端(phpredis)并连接Redis--华为DCS for Redis使用经验系列
使用php连接Redis.Memcache等都需要进行扩展,以CentOS为例,介绍phpredis的客户端环境搭建. 第0步:准备工作 华为云上购买1台弹性云服务器ECS(我选了CentOS 6.3 ...
- CentOS7安装VMware Tools
安装依赖包 [root@localhost ~]# yum -y install perl gcc gcc-c++ make cmake kernel kernel-headers kernel-de ...
- Daily Srum 10.26
Daily Scrum Meeting 虽然TFS的相关使用已经在上面贴出来一段时间,但是要运用TFS还是有些困难的,特别是TFS的代码管理机制,所以我们让部分人先弄清楚,然后再教授给其他人.终于大家 ...
- No.110_第三次团队会议
前端的易帜 前端在整个软件中有着举足轻重的地位.前端设计一般可以理解为视觉设计,前端开发则是前台代码的实现. 随着科技水平的提高和生产力的提高,人民对于审美的要求逐渐增高.在没有科技壁垒的情况下,是否 ...
- Daily Scrumming 2015.10.23(Day 4)
今明两天任务表 Member Today’s Task Tomorrow’s Task 江昊 继续学习rails ActiveRecord 数据库迁移 域名备案申请 学习rails router配置与 ...
- OO第三阶段作业总结
调研: 最早的程序设计是直接采用机器语言来编写的,或者使用二进制码来表示机器能够识别和执行的指令和数据.机器语言的优点在于速度快,缺点在于写起来实在是太困难了,编程效率低,可读性差,并且 ...
- jsp九大内置对象之session和application
session和application 用的都是特别多尤其是application,但是想全面学习一下内置对象所以都了解一下. session又被称为是会话生存期是用户进入浏览器到关闭浏览器的期间.s ...
- gdb调试器学习链接
首先要带 -g 选项用gcc编译 常用指令:http://linuxtools-rst.readthedocs.io/zh_CN/latest/tool/gdb.html#gdb 带main的命令行参 ...