http://www.lydsy.com/JudgeOnline/problem.php?id=1026 (题目链接)

题意

  在区间${[A,B]}$有多少个数相邻两个数位上的数之差至少为2。

Solution

  数位dp,右转题解:LCF

  其中${f[i][0]}$,表示的是第${i}$位为${0}$的方案数,并不是不取${i}$位。

细节

  LL

代码

// bzoj1026
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<ctime>
#define LL long long
#define inf (1ll<<30)
#define MOD 1000000007
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; LL f[20][10],g[20],ans;
int n,a[2],t[20]; LL solve(int p) {
memset(f,0,sizeof(f));
memset(g,0,sizeof(g));
for (n=0;a[p];a[p]/=10) t[++n]=a[p]%10;
for (int i=0;i<10;i++) f[1][i]=1;
for (int i=2;i<=n;i++)
for (int j=0;j<10;j++)
for (int k=0;k<10;k++) if (abs(j-k)>1) f[i][j]+=f[i-1][k];
g[1]=1;
for (int i=2;i<=n;i++) {
for (int j=0;j<t[i-1];j++)
if (abs(t[i]-j)>=2) g[i]+=f[i-1][j];
if (abs(t[i]-t[i-1])>1) g[i]+=g[i-1];
}
LL res=0;
for (int i=1;i<n;i++)
for (int j=1;j<10;j++) res+=f[i][j];
for (int i=1;i<t[n];i++) res+=f[n][i];
return res+g[n];
}
int main() {
scanf("%d%d",&a[0],&a[1]);a[0]--;
ans-=solve(0);
ans+=solve(1);
printf("%lld",ans);
return 0;
}

【bzoj1026】 SCOI2009—windy数的更多相关文章

  1. BZOJ1026 SCOI2009 windy数 【数位DP】

    BZOJ1026 SCOI2009 windy数 Description windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道,在A和B ...

  2. BZOJ1026: [SCOI2009]windy数[数位DP]

    1026: [SCOI2009]windy数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6346  Solved: 2831[Submit][Sta ...

  3. 【数位DP】bzoj1026: [SCOI2009]windy数

    1026: [SCOI2009]windy数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4163  Solved: 1864[Submit][Sta ...

  4. bzoj1026: [SCOI2009]windy数(数位dp)

    1026: [SCOI2009]windy数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8203  Solved: 3687[Submit][Sta ...

  5. 2018.06.30 BZOJ1026: [SCOI2009]windy数(数位dp)

    1026: [SCOI2009]windy数 Time Limit: 1 Sec Memory Limit: 162 MB Description windy定义了一种windy数.不含前导零且相邻两 ...

  6. bzoj千题计划117:bzoj1026: [SCOI2009]windy数

    http://www.lydsy.com/JudgeOnline/problem.php?id=1026 数位DP 如果前一位填的是0, 0是前导0,下一位可以随便填 0不是前导0,下一位不能填1 为 ...

  7. bzoj1026: [SCOI2009]windy数(传说你是数位DP)

    1026: [SCOI2009]windy数 题目:传送门 题解: 其实之前年少无知的时候好像A过...表示当时并不知道什么数位DP 今天回来深造一发... 其实如果对这个算法稍有了解...看到这题的 ...

  8. [bzoj1026][SCOI2009]windy数_数位dp

    windy数 bzoj-1026 题目大意:求一段区间中的windy数个数. 注释:如果一个数任意相邻两位的差的绝对值都不小于2,这个数就是windy数,没有前导0.$区间边界<=2\cdot ...

  9. [BZOJ1026][SCOI2009]windy数 解题报告|数位dp

    Description windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道,在A和B之间,包括A和B,总共有多少个windy数? 一直 ...

  10. BZOJ1026: [SCOI2009]windy数

    传送门 md直接wa了78次,身败名裂 没学过数位DP硬搞了一道数位DP的模板题,感觉非常的愉(sha)悦(cha). 二分转化枚举思想.首先DP预处理出来$f[i][j]$表示有$i$位且第$i$位 ...

随机推荐

  1. 关于linux-centos7 安装完成git后npm突然无法使用问题处理

    报错: 解决方法: 查看一下nodejs是否安装,如果没有安装的话安装完成就能解决了

  2. oAuth2.0在laravel5.2中的简单应用

    oAuth是一个关于授权的开放网络标准,目前的版本是2.0.laravel是php开发框架,目前最新稳定版本是5.5.授权在应用程序中有非常广泛的使用场景,本文将以laravel5.2为例来简单介绍o ...

  3. Python20-Day04

    ##########迭代器.生成器和面向过程编程########## 一.迭代器 迭代器是一个重复的过程,每次重复即一次迭代,并且每次迭代的结果都是下一次迭代的初始值: l = [1,2,3] cou ...

  4. Django之Form

    目录 一.说明 二.参数说明 三.自定义验证规则 四.实例 一.说明 Django的Form主要具有一下几大功能: 生成HTML标签 验证用户数据(显示错误信息) HTML Form提交保留上次提交数 ...

  5. Go Going软件需求规格说明书

    1.目标是什么,目标不包括什么? 我们软件的目标是让大学生走出校园,用最小的花费到更多的地方去,开阔视野,读万卷书再行万里路. 目标暂且不包括外校学生 2.用户和典型场景是什么? 用户:在校大学生 典 ...

  6. java的(PO,VO,TO,BO,DAO,POJO)类名包名解释

    VO:值对象.视图对象 PO:持久对象 QO:查询对象 DAO:数据访问对象——同时还有DAO模式 DTO:数据传输对象——同时还有DTO模式 PO:全称是persistant object持久对象最 ...

  7. beta冲刺(5/7)

    目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:恺琳 组员6:翟丹丹 组员7:何家伟 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4 ...

  8. “吃神么,买神么”的第一个Sprint计划(第四天)

    “吃神么,买神么”项目Sprint计划 ——5.24  星期日(第四天)立会内容与进度 摘要:logo做出来了,但是在立会展示时遭到反对,不合格,重新设计.(附上失败的logo图) 目前搜索栏出来了, ...

  9. python learning OOP1.py

    class Student(object): # 构造函数 # 第一个参数永远是 self 表示一个实例本身,但是传参的时候不需要传 # 在Python中,实例的变量名如果以__开头,就变成了一个私有 ...

  10. 转 JS模块化简单实现

    git示例地址:https://github.com/wufenfen/requireJS-Demo.git