BZOJ 3143 游走 | 数学期望 高斯消元
啊 我永远喜欢期望题 
BZOJ 3143 游走
题意
有一个n个点m条边的无向联通图,每条边按1m编号,从1号点出发,每次随机选择与当前点相连的一条边,走到这条边的另一个端点,一旦走到n号节点就停下。每经过一条边,要付出这条边的编号这么多的代价。现将所有边用1m重新编号,使总代价的期望最小,求这个最小值。
题解
我们可以求出每条边的期望经过次数,然后贪心地让经过次数多的边编号小即可。
直接用边来列方程求经过次数似乎列不出来,我们借助点来列方程。
设x[u]为从某个点出发的次数的期望,v为与u相连的点,d[v]为点d的度,则:
\]
特殊地,不能从点n出发,所以x[n] = 0;第一次从点1出发,\(x[u] = 1 + \sum \frac{x[v]}{d[v]}\)。
解出所有x后,设一条边的两个端点是u和v,则经过每条边的次数的期望是:
\]
代码如下:
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#define space putchar(' ')
#define enter putchar('\n')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
const int N = 505, M = 250005;
int n, m, u[M], v[M], d[N];
double ans[M], x[N], f[N][N], res;
void build(){
for(int i = 1; i <= n; i++)
f[i][i] = -1;
for(int e = 1; e <= m; e++){
f[u[e]][v[e]] += 1.0 / d[v[e]];
f[v[e]][u[e]] += 1.0 / d[u[e]];
}
for(int i = 1; i <= n; i++)
f[n][i] = 0;
f[n][n] = 1, f[n][n + 1] = 0;
f[1][n + 1] = -1;
}
void Gauss(){
for(int i = 1; i <= n; i++){
int l = i;
for(int j = i + 1; j <= n; j++)
if(fabs(f[j][i]) > fabs(f[l][i])) l = j;
if(l != i)
for(int j = i; j <= n + 1; j++)
swap(f[i][j], f[l][j]);
for(int j = n + 1; j >= i; j--)
f[i][j] /= f[i][i];
for(int j = i + 1; j <= n; j++)
for(int k = n + 1; k >= i; k--)
f[j][k] -= f[j][i] * f[i][k];
}
for(int i = n; i; i--){
x[i] = f[i][n + 1];
for(int j = 1; j < i; j++)
f[j][n + 1] -= f[j][i] * x[i];
}
}
int main(){
read(n), read(m);
for(int i = 1; i <= m; i++)
read(u[i]), read(v[i]), d[u[i]]++, d[v[i]]++;
build();
Gauss();
for(int i = 1; i <= m; i++)
ans[i] = x[u[i]] / d[u[i]] + x[v[i]] / d[v[i]];
sort(ans + 1, ans + m + 1);
for(int i = 1; i <= m; i++)
res += ans[i] * (m - i + 1);
printf("%.3lf\n", res);
return 0;
}
BZOJ 3143 游走 | 数学期望 高斯消元的更多相关文章
- BZOJ 3143 游走(贪心+期望+高斯消元)
一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...
- BZOJ.3143.[HNOI2013]游走(概率 期望 高斯消元)
题目链接 参考 远航之曲 把走每条边的概率乘上分配的标号就是它的期望,所以我们肯定是把大的编号分配给走的概率最低的边. 我们只要计算出经过所有点的概率,就可以得出经过一条边(\(u->v\))的 ...
- [HNOI2013] 游走 - 概率期望,高斯消元,贪心
假如我们知道了每条边经过的期望次数,则变成了一个显然的贪心.现在考虑如何求期望次数. 由于走到每个点后各向等概率,很显然一条边的期望次数可以与它的两个端点的期望次数,转化为求点的期望次数 考虑每个点对 ...
- BZOJ 2707: [SDOI2012]走迷宫 拓扑+高斯消元+期望概率dp+Tarjan
先Tarjan缩点 强连通分量里用高斯消元外面直接转移 注意删掉终点出边和拓扑 #include<cstdio> #include<cstring> #include<a ...
- 【洛谷3232】[HNOI2013] 游走(贪心+高斯消元)
点此看题面 大致题意: 一个无向连通图,小\(Z\)从\(1\)号顶点出发,每次随机选择某条边走到下一个顶点,并将\(ans\)加上这条边的编号,走到\(N\)号顶点时结束.请你对边进行编号,使总分期 ...
- BZOJ 3270: 博物馆 概率与期望+高斯消元
和游走挺像的,都是将概率转成期望出现的次数,然后拿高斯消元来解. #include <bits/stdc++.h> #define N 23 #define setIO(s) freope ...
- P4321-随机漫游【状压dp,数学期望,高斯消元】
正题 题目链接:https://www.luogu.com.cn/problem/P4321 题目大意 给出\(n\)个点\(m\)条边的一张无向图,\(q\)次询问. 每次询问给出一个点集和一个起点 ...
- UVa 10828 Back to Kernighan-Ritchie (数学期望 + 高斯消元)
题意:给定一个 n 个结点的有向图,然后从 1 结点出发,从每个结点向每个后继结点的概率是相同的,当走到一个没有后继结点后,那么程序终止,然后问你经过每个结点的期望是次数是多少. 析:假设 i 结点的 ...
- BZOJ 2707: [SDOI2012]走迷宫( tarjan + 高斯消元 )
数据范围太大不能直接高斯消元, tarjan缩点然后按拓扑逆序对每个强连通分量高斯消元就可以了. E(u) = 1 + Σ E(v) / degree(u) 对拍时发现网上2个程序的INF判断和我不一 ...
随机推荐
- 维诺图(Voronoi Diagram)分析与实现(转)
一.问题描述1.Voronoi图的定义又叫泰森多边形或Dirichlet图,它是由一组由连接两邻点直线的垂直平分线组成的连续多边形组成. 2.Voronoi图的特点(1)每个V多边形内有一个生成元: ...
- AssetBundle一些问题
AssetBundle划分过细的问题,比如每个资源都是AssetBundle. 加载IO次数过多,从而增大了硬件设备耗能和发热的压力: Unity 5.3 ~ 5.5 版本中,Android平台上在不 ...
- php-7.1.11-64位
php-7.1.11-Win32-VC14-x64.zip 链接:https://pan.baidu.com/s/1w8-fJo8-oWrriHyWpU5Fpg 提取码:bd0e 复制这段内容后打开百 ...
- PHPCMS V9 二次开发常用代码集
0:调用最新文章,带所在版块 {pc:get sql="SELECT a.title, a.catid, b.catid, b.catname, a.url as turl ,b.url a ...
- GIT问题(二)——add报错
- Spring AOP部分源码分析
Spring源码流程分析-AOP相关 根据Spring源码整理,其中Calculator为自定义的实现方法. AnnotationConfigApplicationContext()加载配置类的流程 ...
- [linux] lsyncd同步工具
环境说明: 192.168.56.101 同步源 192.168.56.102 同步目标 操作系统centos 7 lsyncd项目地址:https://github.com/axkibe/lsync ...
- 浏览器差异bug汇总(js篇)
获取滚动条高度 var scrollTop = document.body.scrollTop || document.documentElement.scrollTop; safari浏览器时间函数 ...
- 阿里nas挂载错误
报错如下,解决:yum install nfs-utils 即可 mount: wrong fs type, bad option, bad superblock on 12080482f3-qra4 ...
- [BUAA OO]第二次博客作业
第五次作业 这次作业是电梯系列作业的终极版,要求是使用多线程实现三部电梯的运行.这次作业的难点在于第一次运用多线程技术,对于线程中的行为并不了解,以及电梯功能的实现(如果之前作业采取的是扫描指令队列预 ...