【cdq分治】【P4390】[BOI2007]Mokia 摩基亚
Description
给你一个 \(W~\times~W\) 的矩阵,每个点有权值,每次进行单点修改或者求某子矩阵内权值和,允许离线
Input
第一行是两个数字 \(0\) 和矩阵大小 \(W\)
下面每行可能会出现如下参数
\(1,x,y,A\) 单点修改格子 \(x,y\) 为 \(A\)
\(2,x_1,y_1,x_2,y_2\) 查询给定矩阵的权值和
\(3\) 结束查询与修改
Output
对每个查询给出一行作为答案
Hint
\(1~\leq~W~\leq~2000000\)
修改不超过 \(1.6e5\) 个
查询不超过 \(1e4\) 个
保证答案在整形范围内
Solution
这不傻逼题,直接树状数组套treap完事了
我们考虑离线乱搞一下
将查询改为每次查询二维前缀和容斥的形式进行四次单点查询。
我们考虑对 \(x,y\) 的前缀和查询:
我们只需要考虑修改时间在该次查询之前,且 \(x_0~\leq~x~\land~y_0~\leq~y\) 的修改操作 \((x_0,y_0)\)。
我们发现这是一个标准的cdq分治模型:
第一维为时间序,第二维为 \(x\) 坐标,第三维为 \(y\) 坐标。
时间序默认有序,每次考虑前半部分的 \(x_0~\leq~x\) 的点中 \(y_0~\leq~y\) 的点对答案的贡献,用树状数组来统计这部分答案
时间复杂度 \(O(n~\log^2 n)\),空间复杂度 \(O(n~\log n)\)
Code
#include <cstdio>
#include <vector>
#include <iostream>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif
typedef long long int ll;
namespace IPT {
const int L = 1000000;
char buf[L], *front=buf, *end=buf;
char GetChar() {
if (front == end) {
end = buf + fread(front = buf, 1, L, stdin);
if (front == end) return -1;
}
return *(front++);
}
}
template <typename T>
inline void qr(T &x) {
char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
if (lst == '-') x = -x;
}
namespace OPT {
char buf[120];
}
template <typename T>
inline void qw(T x, const char aft, const bool pt) {
if (x < 0) {x = -x, putchar('-');}
int top=0;
do {OPT::buf[++top] = static_cast<char>(x % 10 + '0');} while (x /= 10);
while (top) putchar(OPT::buf[top--]);
if (pt) putchar(aft);
}
const int maxn = 2000010;
struct OP {
int x, y, id, v;
inline void print() {
std::cerr << x << ' ' << y << ' ' << id << ' ' << v << std::endl;
}
};
std::vector<OP> Q;
int n, cnt;
int ans[maxn], tree[maxn];
int query(int);
int lowbit(int);
void cdq(int, int);
void update(int, int);
int main() {
freopen("1.in", "r", stdin);
int a, b, c, d;
qr(a); qr(n); a = 0; qr(a);
while (a != 3) {
if (a == 1) {
a = b = c = 0; qr(a); qr(b); qr(c);
Q.push_back({a, b, 0, c});
} else {
a = b = c = d = 0; qr(a); qr(b); qr(c); qr(d);
Q.push_back({c, d, ++cnt, 1});
Q.push_back({a - 1, b - 1, cnt, 1});
Q.push_back({c, b - 1, cnt, -1});
Q.push_back({a - 1, d, cnt, -1});
}
a = 0; qr(a);
}
cdq(0, Q.size() - 1);
for (int i = 1; i <= cnt; ++i) qw(ans[i], '\n', true);
return 0;
}
void cdq(int l, int r) {
if (l == r) return;
int mid = (l + r) >> 1;
cdq(l, mid); cdq(mid + 1, r);
std::vector<OP>temp;
int pre = l;
for (int i = mid + 1; i <= r; ++i) {
while ((pre <= mid) && (Q[pre].x <= Q[i].x)) {
if (Q[pre].id == 0) update(Q[pre].y, Q[pre].v);
temp.push_back(Q[pre++]);
}
ans[Q[i].id] += Q[i].v * query(Q[i].y);
temp.push_back(Q[i]);
}
for (int i = l; i < pre; ++i) if (Q[i].id == 0) update(Q[i].y, -Q[i].v);
while (pre <= mid) temp.push_back(Q[pre++]);
for (int i = l; i <= r; ++i) Q[i] = temp[i - l];
}
inline int lowbit(int x) {return x & -x;}
void update(int x, int v) {
while (x <= n) {
tree[x] += v; x += lowbit(x);
}
}
int query(int x) {
int _ret = 0;
while (x) {
_ret += tree[x];
x -= lowbit(x);
}
return _ret;
}
【cdq分治】【P4390】[BOI2007]Mokia 摩基亚的更多相关文章
- 洛谷 P4390 [BOI2007]Mokia 摩基亚 解题报告
P4390 [BOI2007]Mokia 摩基亚 题目描述 摩尔瓦多的移动电话公司摩基亚(\(Mokia\))设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如"用户 ...
- P4390 [BOI2007]Mokia 摩基亚 (CDQ解决三维偏序问题)
题目描述 摩尔瓦多的移动电话公司摩基亚(Mokia)设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如"用户C的位置在哪?"的问题,精确到毫米.但其真正高科 ...
- Luogu P4390 [BOI2007]Mokia 摩基亚 | CDQ分治
题目链接 $CDQ$分治. 考虑此时在区间$[l,r]$中,要计算$[l,mid]$中的操作对$[mid+1,r]$中的询问的影响. 计算时,排序加上树状数组即可. 然后再递归处理$[l,mid]$和 ...
- [洛谷P4390][BOI2007]Mokia 摩基亚
题目大意: 维护一个W*W的矩阵,每次操作可以增加某格子的权值,或询问某子矩阵的总权值. 题解:CDQ分治,把询问拆成四个小矩形 卡点:无 C++ Code: #include <cstdio& ...
- P4390 [BOI2007]Mokia 摩基亚
传送门 对于一个询问 $(xa,ya),(xb,yb)$,拆成 $4$ 个询问并容斥一下 具体就是把询问变成求小于等于 $xb,yb$ 的点数,减去小于等于 $xa-1,yb$ 和小于等于 $xb,y ...
- P4390 [BOI2007]Mokia 摩基亚(cdq分治)
一样是cdq的板子 照着园丁的烦恼就好了 代码 #include <cstdio> #include <cstring> #include <algorithm> ...
- 【BZOJ1176】[BOI2007]Mokia 摩基亚
[BZOJ1176][BOI2007]Mokia 摩基亚 题面 bzoj 洛谷 题解 显然的\(CDQ\)\(/\)树套树题 然而根本不想写树套树,那就用\(CDQ\)吧... 考虑到点\((x1,y ...
- cogs1752[boi2007]mokia 摩基亚 (cdq分治)
[题目描述] 摩尔瓦多的移动电话公司摩基亚(Mokia)设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如“用户C的位置在哪?”的问题,精确到毫米.但其真正高科技之处在于,它能 ...
- [BOI2007]Mokia 摩基亚
Description: 摩尔瓦多的移动电话公司摩基亚(Mokia)设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如"用户C的位置在哪?"的问题,精确到毫 ...
随机推荐
- 高可用OpenStack(Queen版)集群-12.Cinder计算节点
参考文档: Install-guide:https://docs.openstack.org/install-guide/ OpenStack High Availability Guide:http ...
- python3 拼接字符串的7种方法
1.直接通过(+)操作符拼接 1 2 >>> 'Hello' + ' ' + 'World' + '!' 'Hello World!' 使用这种方式进行字符串连接的操作效率低下,因为 ...
- 【quickhybrid】如何实现一个Hybrid框架
章节目录 [quickhybrid]如何实现一个跨平台Hybrid框架 [quick hybrid]架构一个Hybrid框架 [quick hybrid]H5和Native交互原理 [quick hy ...
- 20172319 2018.04.11-16 《Java程序设计教程》 第6周学习总结
20172319 2018.04.11-16 <Java程序设计教程>第6周学习总结 目录 教材学习内容总结 教材学习中的问题和解决过程 代码调试中的问题和解决过程 代码托管 上周考试错题 ...
- 20162325 金立清 S2 W5 C14
20162325 2017-2018-2 <程序设计与数据结构>第5周学习总结 关键内容摘要 集合是收集并组织其他对象的对象 集合中的元素一般由加入集合的次序或元素之间某些固有的关系而组织 ...
- 团队冲刺——Five
昨天: 司宇航:web项目如何部署到公网,把网址做成桌面图标链接,登录记住密码功能. 王金萱:注册和登录界面,用户数据库的信息录入. 马佳慧:做界面. 季方:处理爬虫数据,实现统计功能. 遇到的问题: ...
- Task 6.1 校友聊之NABCD模型分析
我们团队开发的一款软件是“校友聊”--一个在局域网内免流量进行文字.语音.视频聊天的软件.下面将对此进行NABCD的模型分析. N(Need需求):现如今,随着网络的迅速普及,手机和电脑已经成为每个大 ...
- Spring笔记②--各种属性注入
Ioc 反转控制 反转资源获取的方向 分离接口与实现 采用工厂模式 采用反转控制 Di 依赖注入 依赖容器把资源注入 配置bean 通过全类名(反射) 配置形式:基于xml方式 Ioc容器的b ...
- Spring笔记①--helloworld
Spring Spring是一个轻量级控制反转(IoC)和面向切面(AOP)的容器框架,它主要是为了解决企业应用开发的复杂性而诞生的: 目的:解决企业应用开发的复杂性 功能:使用基本的Javabean ...
- Beta Scrum Day 4 — 听说
听说