链接:

http://acm.hdu.edu.cn/showproblem.php?pid=1151

http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82834#problem/J

/* **************************************************************************
//二分图匹配(匈牙利算法的DFS实现)
//初始化:G[][]两边顶点的划分情况
//建立G[i][j]表示i->j的有向边就可以了,是左边向右边的匹配
//G没有边相连则初始化为0
//uN是匹配左边的顶点数,vN是匹配右边的顶点数
//调用:res=hungary();输出最大匹配数
//优点:适用于稠密图,Find找增广路,实现简洁易于理解
//时间复杂度:O(VE)
//顶点编号从0开始的
//************************************************************************** */

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 205
#define INF 0x3f3f3f3f int n, m, un, vn, G[N][N], used[N], p[N]; int Find(int u)
{
for(int i=; i<vn; i++)
{
if(G[u][i] && !used[i])
{
used[i] = ;
if(p[i]==- || Find(p[i]))
{
p[i] = u;
return ;
}
}
}
return ;
} void hungary()
{
int ans = ;
memset(p, -, sizeof(p)); for(int i=; i<un; i++)
{
memset(used, , sizeof(used));
if(Find(i)) ans++;
} printf("%d\n", n-ans);
} int main()
{
int t;
scanf("%d", &t);
while(t--)
{
int i, u, v; scanf("%d%d", &n, &m); memset(G, , sizeof(G));
for(i=; i<=m; i++)
{
scanf("%d%d", &u, &v);
u--, v--;
G[u][v] = ;
}
un = vn = n; hungary();
}
return ;
}

最小顶点覆盖:在二分图中寻找一个尽量小的点集,使图中每一条边至少有一个点在该点集中。

  最小顶点覆盖 == 最大匹配。

  反证法证明:假设当前存在一条两个端点都不在最小顶点覆盖点集中,那么这么光芒四射的边定可以增大最大匹配边集,与最大匹配矛盾,所以得证。

最小路径覆盖:在二分图中寻找一个尽量小的边集,使图中每一个点都是该边集中某条边的端点。

  最小路径覆盖 == 顶点数 - 最大匹配。

  证明:因为一条边最多可以包含两个顶点,所以我们选边的时候让这样的边尽量多,也就是说最大匹配的边集数目咯。剩下的点就只能一个边连上一个点到集合里啦。

最大独立集:在N个点中选出来一个最大点集,使这个点集中的任意两点之间都没有边。

  最大独立集 == 顶点数 - 最大匹配。

  证明:因为去掉最大匹配两端的顶点去掉以后,剩下的点肯定是独立集。我们再从每个匹配里面挑选出来一个点加入到独立集中,也是不会破坏原有独立集的独立性的。

(匹配 最小路径覆盖)Air Raid --hdu --1151的更多相关文章

  1. hdu1151 二分图(无回路有向图)的最小路径覆盖 Air Raid

    欢迎参加——BestCoder周年纪念赛(高质量题目+多重奖励) Air Raid Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  2. POJ 3020 Antenna Placement【二分匹配——最小路径覆盖】

    链接: http://poj.org/problem?id=3020 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  3. POJ 1422 Air Raid(二分图匹配最小路径覆盖)

    POJ 1422 Air Raid 题目链接 题意:给定一个有向图,在这个图上的某些点上放伞兵,能够使伞兵能够走到图上全部的点.且每一个点仅仅被一个伞兵走一次.问至少放多少伞兵 思路:二分图的最小路径 ...

  4. POJ-1422 Air Raid---二分图匹配&最小路径覆盖

    题目链接: https://vjudge.net/problem/POJ-1422 题目大意: 有n个点和m条有向边,现在要在点上放一些伞兵,然后伞兵沿着图走,直到不能走为止 每条边只能是一个伞兵走过 ...

  5. Air Raid HDU 1151

    题意  给定n个路口 加上一些单向路  求遍历完所有路口需要多少人  人是空降的 哪里都可以作为起点 求 最小边覆盖   (用最少的边覆盖所有的点) 也叫最小路径覆盖(更形象) 也叫二分图的最大独立集 ...

  6. UVA 1201 - Taxi Cab Scheme(二分图匹配+最小路径覆盖)

    UVA 1201 - Taxi Cab Scheme 题目链接 题意:给定一些乘客.每一个乘客须要一个出租车,有一个起始时刻,起点,终点,行走路程为曼哈顿距离,每辆出租车必须在乘客一分钟之前到达.问最 ...

  7. POJ-3020 Antenna Placement---二分图匹配&最小路径覆盖&建图

    题目链接: https://vjudge.net/problem/POJ-3020 题目大意: 一个n*m的方阵 一个雷达可覆盖两个*,一个*可与四周的一个*被覆盖,一个*可被多个雷达覆盖问至少需要多 ...

  8. J - Air Raid - hdu 1151(最小边覆盖)

    题意:给一个有向无环图,求出来最少需要几个士兵可以遍历所有的边. 分析:有向无环图的最小边覆盖 = 点数 - 最大匹配数 为什么是这样的公式??可以思考一下,如果这N个点之间没有边,是不是应该有N个士 ...

  9. POJ3020 二分图匹配——最小路径覆盖

    Description The Global Aerial Research Centre has been allotted the task of building the fifth gener ...

随机推荐

  1. python中时间差中seconds和total_seconds

    在python中经常会用到计算两个时间差,两个日期类型进行相减可以获取到时间差 经常会使用seconds来获取,其实seconds获取的是时间差的秒数,遗漏了天 seconds是获取时间部分的差值,而 ...

  2. 【完结汇总】iKcamp出品基于Koa2搭建Node.js实战共十一堂课(含视频)

  3. ubuntu搭建ftp服务器

    (1).首先用命令检查是否安装了vsftpd vsftpd -version  如果未安装用一下命令安装 sudo apt-get install vsftpd 安装完成后,再次输入vsftpd -v ...

  4. moco操作

      1.启动 单个文件启动:将jar包跟启动的文件放在一个文件夹下 命令:java -jar moco-runner-<version>-standalone.jar http -p 12 ...

  5. SO\PR回写的数据如下

    insert into OUT_ORDER_RES ---JAVA FOR PR ) as LGORT ,'SAPRFC' as ERNAM,out_pr.due_datetime,out_pr.so ...

  6. 好用的模板引擎NVelocity

    CastleNVelocity-1.1.1,使用方法: 把dll放到项目中,添加引用,修改配置的文件夹以及数据模型,最后在逻辑代码中调用即可. 封装到CommonHelper.cs using Sys ...

  7. Partial Tree(DP)

    Partial Tree http://acm.hdu.edu.cn/showproblem.php?pid=5534 Time Limit: / MS (Java/Others) Memory Li ...

  8. jquery源码学习-构造函数(2)

    最近几天一直在研究jquery源码,由于水平太低看得昏头转向.本来理解的也不是很深刻,下面就用自己的想法来说下jquery是如何定义构造函数初始化的.如果有什么不对的地方,希望个位高手指出.  一般写 ...

  9. IntentService----意图服务

    意图服务是异步进行的  执行完操作后就会自己消毁(onDestroy方法) 本例为点击按钮下载三张图片相当于连续执行三次意图服务中的onStartcommand方法 import android.ap ...

  10. win 下 nginx 的虚拟主机创建

    1.在nginx安装目录下的conf下创建vhost目录,用于存放虚拟主机配置文件.   2.在nginx安装目录下的conf/nginx.conf的http{}中加入 include vhost/* ...