HLG1744组合数学问题与lucas定理运用
|
The figure below shows Pascal's Triangle:
Baby H divides Pascal's Triangle into some Diagonals, like the following figure:
Baby H wants to know the sum of K number in front on the Mth diagonal. Try to calculate it. |
| Input |
|
There are multiple test cases. The first line is a positive integer T (1<=T<=100) indicating the number of test cases. For each test case: Line 1. Two positive integers M and K (1<= M , K <= 100 000). |
| Output |
|
For each test case, output the sum of K number in front on the Mth diagonal in one line. The answer should modulo to 20 000 003. |
| Sample Input |
2 |
| Sample Output |
6 |
思路公式,否则超时
C(N,M)+C(N+1,M)+C(N+2,M)==C(N+3,M+1)
代码#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
LL exp_mod(LL a, LL b, LL p)
{ LL res = 1;
while(b != 0)
{
if(b&1) res = (res * a) % p;
a = (a*a) % p;
b >>= 1;
}
return res;
}
LL Comb(LL a, LL b, LL p)
{
if(a < b) return 0;
if(a == b) return 1;
if(b > a - b) b = a - b; LL ans = 1, ca = 1, cb = 1;
for(LL i = 0; i < b; ++i)
{
ca = (ca * (a - i))%p;
cb = (cb * (b - i))%p;
}
ans = (ca*exp_mod(cb, p - 2, p)) % p;
return ans;
}
LL Lucas(int n, int m, int p)
{
LL ans = 1;
while(n&&m&&ans)
{
ans = (ans*Comb(n%p, m%p, p)) % p;
n /= p;
m /= p;
}
return ans;
}
int main()
{
int n, m, t;
scanf("%d",&t);
int p=20000003;
while(t--)
{
scanf("%d%d",&m,&n);
printf("%lld\n", Lucas(m+n-1, m, p));
}
return 0;
}
HLG1744组合数学问题与lucas定理运用的更多相关文章
- Bzoj 4403: 序列统计 Lucas定理,组合数学,数论
4403: 序列统计 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 328 Solved: 162[Submit][Status][Discuss] ...
- HDU 5226 Tom and matrix(组合数学+Lucas定理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5226 题意:给一个矩阵a,a[i][j] = C(i,j)(i>=j) or 0(i < ...
- lucas定理和组合数学
自湖南长沙培训以来的坑...一直未填,今天把这个问题解决掉. 参考: 1.http://www.cnblogs.com/Var123/p/5523068.html 2.http://blog.csdn ...
- Lucas定理及应用
额,前两天刚讲了数据结构,今天我来讲讲组合数学中的一种奇妙优化——Lucas 先看这样一个东西 没学过lucas的肯定会说:还不简单?处理逆元,边乘边膜呗 是,可以,但注意一下数据范围 你算这一次,你 ...
- [学习笔记]扩展LUCAS定理
可以先做这个题[SDOI2010]古代猪文 此算法和LUCAS定理没有半毛钱关系. [模板]扩展卢卡斯 不保证P是质数. $C_n^m=\frac{n!}{m!(n-m)!}$ 麻烦的是分母. 如果互 ...
- hdu 3037 费马小定理+逆元除法取模+Lucas定理
组合数学推推推最后,推得要求C(n+m,m)%p 其中n,m小于10^9,p小于1^5 用Lucas定理求(Lucas定理求nm较大时的组合数) 因为p数据较小可以直接阶乘打表求逆元 求逆元时,由费马 ...
- Lucas定理初探
1.1 问题引入 已知\(p\)是一质数,求\(\dbinom{n}{m}\pmod{p}\). 关于组合数,它和排列数都是组合数学中的重要概念.这里会张贴有关这两个数的部分内容. 由于Lucas定理 ...
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
- CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...
随机推荐
- [BZOJ 2241][SDOI2011]打地鼠(枚举+预处理)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2241 分析: 鉴于R,C的取值很小,于是可以人为枚举R和C的大小,然后判定这个规格的锤 ...
- [C#]Attribute特性
简介 特性提供功能强大的方法,用以将元数据或声明信息与代码(程序集.类型.方法.属性等)相关联. 特性与程序实体关联后,即可在运行时使用名为“反射”的技术查询特性. 特性具有以下属性: 特性可向程序中 ...
- C#中值类型和引用类型
本文将介绍C#类型系统中的值类型和引用类型,以及两者之间的一些区别.同时,还会介绍一下装箱和拆箱操作. 值类型和引用类型 首先,我们看看在C#中哪些类型是值类型,哪些类型是引用类型. 值类型: 基础数 ...
- Foix_Reader_6.0|PDF阅读器
福晰PDF阅读器,是阅读器中的精品.此版本是优化版本. 00:风格前卫 01:使用简洁 下载地址: http://yunpan.cn/cHvyUfCdMKZz6 访问密码 ead7
- 在windows 环境下对于 git 服务器的安装和使用
前言: 虽然说在团队开发的时候会有版本控制服务器,但是个人自己开发的时候,有的时候也需要有个版本控制下,比如,你改好了一个小的功能,然后在这个功能上继续扩展,结果扩展不成功,于是回到这个小功能上去.当 ...
- Jquery-处理iframe的高度自适应
超级简单的方法,也不用写什么判断浏览器高度.宽度啥的.下面的两种方法自选其一就行了.一个是放在和iframe同页面的,一个是放在test.html页面的.注意别放错地方了哦. iframe代码,注意要 ...
- json2.js的初步学习与了解
json2.js的初步学习与了解,想要学习json的朋友可以参考下. json2.js的初步学习与了解 1.)该js的下载地址是:http://www.json.org/json2.js 2.)在页面 ...
- 【Gym 100015B】Ball Painting
题 There are 2N white balls on a table in two rows, making a nice 2-by-N rectangle. Jon has a big pai ...
- BZOJ-1975 魔法猪学院 K短路 (A*+SPFA)
1975: [Sdoi2010]魔法猪学院 Time Limit: 10 Sec Memory Limit: 64 MB Submit: 1323 Solved: 433 [Submit][Statu ...
- BZOJ-1491 社交网络 FLoyd+乱搞
感觉这两天一直在做乱搞的题... 1491: [NOI2007]社交网络 Time Limit: 10 Sec Memory Limit: 64 MB Submit: 1279 Solved: 732 ...

