Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).

Range Sum Query 2D
The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8. Example:
Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
] sumRegion(2, 1, 4, 3) -> 8
update(3, 2, 2)
sumRegion(2, 1, 4, 3) -> 10
Note:
The matrix is only modifiable by the update function.
You may assume the number of calls to update and sumRegion function is distributed evenly.
You may assume that row1 ≤ row2 and col1 ≤ col2.

参考:https://leetcode.com/discuss/72685/share-my-java-2-d-binary-indexed-tree-solution

Build binary indexed tree takes :   O(mn*logm*logn)   time, both update() and getSum() take:      O(logm*logn)   time. The arr[][] is used to keep a backup of the matrix[][] so that we know the difference of the updated element and use that to update the binary indexed tree. The idea of calculating sumRegion() is the same as in Range Sum Query 2D - Immutable.

Summary of Binary Indexed Tree:

Binary Index Tree参见:https://www.youtube.com/watch?v=CWDQJGaN1gY

Compare Segment Tree vs Binary Indexed Tree

Segment Tree:

      Time: O(N)build, O(logN)search, O(logN) update,   space: O(NlogN)

Binary Indexed Tree:

      Time: O(NlogN)build, O(logN) search, O(logN) update,   space: O(N)

The advantage of Binary Indexed Tree over Segment Tree are:

require less space and very easy to implement

 public class Solution {
int m, n;
int[][] arr; // stores matrix[][]
int[][] BITree; // 2-D binary indexed tree public Solution(int[][] matrix) {
if (matrix.length == 0 || matrix[0].length == 0) {
return;
} m = matrix.length;
n = matrix[0].length; arr = new int[m][n];
BITree = new int[m + 1][n + 1]; for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
update(i, j, matrix[i][j]); // init BITree[][] }
}
} public void update(int i, int j, int val) {
int diff = val - arr[i][j]; // get the diff
arr[i][j] = val; // update arr[][] i++; j++;
for (int x=i; x<=m; x+=x&(-x)) {
for (int y=j; y<=n; y+=y&(-y)) {
BITree[x][y] += diff;
}
}
} int getSum(int i, int j) {
int sum = 0; i++; j++;
for (int x=i; x>0; x-=x&(-x)) {
for (int y=j; y>0; y-=y&(-y)) {
sum += BITree[x][y];
}
}
return sum;
} public int sumRegion(int i1, int j1, int i2, int j2) {
return getSum(i2, j2) - getSum(i1-1, j2) - getSum(i2, j1-1) + getSum(i1-1, j1-1);
}

Introduction from GeeksforGeeks:

We have an array arr[0 . . . n-1]. We should be able to
1 Find the sum of first i elements.
Update value of a specified element of the array arr[i] = x where 0 <= i <= n-1.

simple solution is to run a loop from 0 to i-1 and calculate sum of elements. To update a value, simply do arr[i] = x. The first operation takes O(n) time and second operation takes O(1) time. Another simple solution is to create another array and store sum from start to i at the i’th index in this array. Sum of a given range can now be calculated in O(1) time, but update operation takes O(n) time now. This works well if the number of query operations are large and very few updates.

Can we perform both the operations in O(log n) time once given the array? 
One Efficient Solution is to use Segment Tree that does both operations in O(Logn) time.

Using Binary Indexed Tree, we can do both tasks in O(Logn) time. The advantages of Binary Indexed Tree over Segment are, requires less space and very easy to implement..

Representation
Binary Indexed Tree is represented as an array. Let the array be BITree[]. Each node of Binary Indexed Tree stores sum of some elements of given array. Size of Binary Indexed Tree is equal to n where n is size of input array. In the below code, we have used size as n+1 for ease of implementation.(index 0 is a dummy node)

Construction
We construct the Binary Indexed Tree by first initializing all values in BITree[] as 0. Then we call update() operation for all indexes to store actual sums, update is discussed below.

Operations

getSum(index): Returns sum of arr[0..index]
// Returns sum of arr[0..index] using BITree[0..n]. It assumes that
// BITree[] is constructed for given array arr[0..n-1]
1) Initialize sum as 0 and index as index+1.
2) Do following while index is greater than 0.
...a) Add BITree[index] to sum
...b) Go to parent of BITree[index]. Parent can be obtained by removing
the last set bit from index, i.e., index = index - (index & (-index))
3) Return sum.


The above diagram demonstrates working of getSum(). Following are some important observations.

Node at index 0 is a dummy node.

A node at index y is parent of a node at index x, iff y can be obtained by removing last set bit from binary representation of x.

A child x of a node y stores sum of elements from of y(exclusive y) and of x(inclusive x).

update(index, val): Updates BIT for operation arr[index] += val
// Note that arr[] is not changed here. It changes
// only BI Tree for the already made change in arr[].
1) Initialize index as index+1.
2) Do following while index is smaller than or equal to n.
...a) Add value to BITree[index]
...b) Go to next node of BITree[index]. Next node can be obtained by i.e., index = index + (index & (-index))

Leetcode: Range Sum Query 2D - Mutable && Summary: Binary Indexed Tree的更多相关文章

  1. [LeetCode] Range Sum Query 2D - Mutable 二维区域和检索 - 可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  2. LeetCode Range Sum Query 2D - Mutable

    原题链接在这里:https://leetcode.com/problems/range-sum-query-2d-mutable/ 题目: Given a 2D matrix matrix, find ...

  3. [LeetCode] Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  4. Range Sum Query 2D - Mutable & Immutable

    Range Sum Query 2D - Mutable Given a 2D matrix matrix, find the sum of the elements inside the recta ...

  5. [Locked] Range Sum Query 2D - Mutable

    Range Sum Query 2D - Mutable Given a 2D matrix matrix, find the sum of the elements inside the recta ...

  6. LeetCode 308. Range Sum Query 2D - Mutable

    原题链接在这里:https://leetcode.com/problems/range-sum-query-2d-mutable/ 题目: Given a 2D matrix matrix, find ...

  7. 308. Range Sum Query 2D - Mutable

    题目: Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper ...

  8. [LeetCode] Range Sum Query 2D - Immutable

    Very similar to Range Sum Query - Immutable, but we now need to compute a 2d accunulated-sum. In fac ...

  9. [Swift]LeetCode308. 二维区域和检索 - 可变 $ Range Sum Query 2D - Mutable

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

随机推荐

  1. Linux的权限说明

    Linux的权限不是很细致,只有RWX三种r(Read,读取):对文件而言,具有读取文件内容的权限:对目录来说,具有浏览目录的权限.w(Write,写入):对文件而言,具有新增,修改,删除文件内容的权 ...

  2. php session 跨页失效问题

    原因是session.savepath 目录不存在或者没有读写权限

  3. bug

    expected identifier,string or number   //这种问题一般是json数据中最后一个逗号没去掉.

  4. MyEclipse8.5 以debug模式启动tomcat6.0服务器 报错cannot connect to vm。

    打开MyEclipse8.5 想以debug模式启动tomcat6.0服务器,报  a configuration error occurred during startup.please verif ...

  5. CC2540的使用入门

    目录 1. 介绍 2. 开发环境 3. SDCC 1. 介绍 CC2540是一款2.4GHz Bluetooth® low energy SOC,基于8051 MCU 首先,你需要硬件设备 笔者的开发 ...

  6. android source compiler

  7. eclipse根据.wsdl文件自动生成webservice的调用客户端

    1.工具:eclipse3.3或者是带有webservice插件的eclipse 2. 首先用浏览器访问webservice的站点,接着保存打开的页面,后缀为.wsdl. 3.把保存好的文件拷入ecl ...

  8. Android笔记:百度地图与高德地图坐标转换问题

    安卓项目使用了百度地图的定位SDK,web端使用的也是百度地图, 后来发现界面显示百度地图不如高德效果好,web改用高德地图,原本的百度地图坐标是可以直接使用的,由于高德和百度地图的坐标系不一致 要如 ...

  9. Wall---hdu1348(求凸包周长 模板)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1348 求凸包周长+2*PI*L: #include <stdio.h> #include ...

  10. Swift-01 UIWebView加载网页

    UIWebView在swift里面的语法,和OC不太一样,但是,使用方法什么的,都是从OC演变过来的.比如,都得有init方法,都有loadRequest方法,所以,有了OC这个基础,学习swift是 ...