Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).

Range Sum Query 2D
The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8. Example:
Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
] sumRegion(2, 1, 4, 3) -> 8
update(3, 2, 2)
sumRegion(2, 1, 4, 3) -> 10
Note:
The matrix is only modifiable by the update function.
You may assume the number of calls to update and sumRegion function is distributed evenly.
You may assume that row1 ≤ row2 and col1 ≤ col2.

参考:https://leetcode.com/discuss/72685/share-my-java-2-d-binary-indexed-tree-solution

Build binary indexed tree takes :   O(mn*logm*logn)   time, both update() and getSum() take:      O(logm*logn)   time. The arr[][] is used to keep a backup of the matrix[][] so that we know the difference of the updated element and use that to update the binary indexed tree. The idea of calculating sumRegion() is the same as in Range Sum Query 2D - Immutable.

Summary of Binary Indexed Tree:

Binary Index Tree参见:https://www.youtube.com/watch?v=CWDQJGaN1gY

Compare Segment Tree vs Binary Indexed Tree

Segment Tree:

      Time: O(N)build, O(logN)search, O(logN) update,   space: O(NlogN)

Binary Indexed Tree:

      Time: O(NlogN)build, O(logN) search, O(logN) update,   space: O(N)

The advantage of Binary Indexed Tree over Segment Tree are:

require less space and very easy to implement

 public class Solution {
int m, n;
int[][] arr; // stores matrix[][]
int[][] BITree; // 2-D binary indexed tree public Solution(int[][] matrix) {
if (matrix.length == 0 || matrix[0].length == 0) {
return;
} m = matrix.length;
n = matrix[0].length; arr = new int[m][n];
BITree = new int[m + 1][n + 1]; for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
update(i, j, matrix[i][j]); // init BITree[][] }
}
} public void update(int i, int j, int val) {
int diff = val - arr[i][j]; // get the diff
arr[i][j] = val; // update arr[][] i++; j++;
for (int x=i; x<=m; x+=x&(-x)) {
for (int y=j; y<=n; y+=y&(-y)) {
BITree[x][y] += diff;
}
}
} int getSum(int i, int j) {
int sum = 0; i++; j++;
for (int x=i; x>0; x-=x&(-x)) {
for (int y=j; y>0; y-=y&(-y)) {
sum += BITree[x][y];
}
}
return sum;
} public int sumRegion(int i1, int j1, int i2, int j2) {
return getSum(i2, j2) - getSum(i1-1, j2) - getSum(i2, j1-1) + getSum(i1-1, j1-1);
}

Introduction from GeeksforGeeks:

We have an array arr[0 . . . n-1]. We should be able to
1 Find the sum of first i elements.
Update value of a specified element of the array arr[i] = x where 0 <= i <= n-1.

simple solution is to run a loop from 0 to i-1 and calculate sum of elements. To update a value, simply do arr[i] = x. The first operation takes O(n) time and second operation takes O(1) time. Another simple solution is to create another array and store sum from start to i at the i’th index in this array. Sum of a given range can now be calculated in O(1) time, but update operation takes O(n) time now. This works well if the number of query operations are large and very few updates.

Can we perform both the operations in O(log n) time once given the array? 
One Efficient Solution is to use Segment Tree that does both operations in O(Logn) time.

Using Binary Indexed Tree, we can do both tasks in O(Logn) time. The advantages of Binary Indexed Tree over Segment are, requires less space and very easy to implement..

Representation
Binary Indexed Tree is represented as an array. Let the array be BITree[]. Each node of Binary Indexed Tree stores sum of some elements of given array. Size of Binary Indexed Tree is equal to n where n is size of input array. In the below code, we have used size as n+1 for ease of implementation.(index 0 is a dummy node)

Construction
We construct the Binary Indexed Tree by first initializing all values in BITree[] as 0. Then we call update() operation for all indexes to store actual sums, update is discussed below.

Operations

getSum(index): Returns sum of arr[0..index]
// Returns sum of arr[0..index] using BITree[0..n]. It assumes that
// BITree[] is constructed for given array arr[0..n-1]
1) Initialize sum as 0 and index as index+1.
2) Do following while index is greater than 0.
...a) Add BITree[index] to sum
...b) Go to parent of BITree[index]. Parent can be obtained by removing
the last set bit from index, i.e., index = index - (index & (-index))
3) Return sum.


The above diagram demonstrates working of getSum(). Following are some important observations.

Node at index 0 is a dummy node.

A node at index y is parent of a node at index x, iff y can be obtained by removing last set bit from binary representation of x.

A child x of a node y stores sum of elements from of y(exclusive y) and of x(inclusive x).

update(index, val): Updates BIT for operation arr[index] += val
// Note that arr[] is not changed here. It changes
// only BI Tree for the already made change in arr[].
1) Initialize index as index+1.
2) Do following while index is smaller than or equal to n.
...a) Add value to BITree[index]
...b) Go to next node of BITree[index]. Next node can be obtained by i.e., index = index + (index & (-index))

Leetcode: Range Sum Query 2D - Mutable && Summary: Binary Indexed Tree的更多相关文章

  1. [LeetCode] Range Sum Query 2D - Mutable 二维区域和检索 - 可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  2. LeetCode Range Sum Query 2D - Mutable

    原题链接在这里:https://leetcode.com/problems/range-sum-query-2d-mutable/ 题目: Given a 2D matrix matrix, find ...

  3. [LeetCode] Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  4. Range Sum Query 2D - Mutable & Immutable

    Range Sum Query 2D - Mutable Given a 2D matrix matrix, find the sum of the elements inside the recta ...

  5. [Locked] Range Sum Query 2D - Mutable

    Range Sum Query 2D - Mutable Given a 2D matrix matrix, find the sum of the elements inside the recta ...

  6. LeetCode 308. Range Sum Query 2D - Mutable

    原题链接在这里:https://leetcode.com/problems/range-sum-query-2d-mutable/ 题目: Given a 2D matrix matrix, find ...

  7. 308. Range Sum Query 2D - Mutable

    题目: Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper ...

  8. [LeetCode] Range Sum Query 2D - Immutable

    Very similar to Range Sum Query - Immutable, but we now need to compute a 2d accunulated-sum. In fac ...

  9. [Swift]LeetCode308. 二维区域和检索 - 可变 $ Range Sum Query 2D - Mutable

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

随机推荐

  1. BAT批处理(一)

    本文摘自博文<BAT批处理文件教程> 这是一篇技术教程,我会用很简单的文字表达清楚自己的意思,只要你识字就能看懂,就能学到知识.写这篇教程的目的,是让每一个看过这些文字的朋友记住一句话:如 ...

  2. concurrency parallel 并发 并行

    Computer Systems A Programmer's Perspective Second Edition The general phenomenon of multiple flows ...

  3. 灰度图像 Grayscale Binary_image

    https://en.wikipedia.org/wiki/Grayscale https://zh.wikipedia.org/wiki/灰度图像 In photography and comput ...

  4. storm-kafka-0.8-plus 源码解析

    https://github.com/wurstmeister/storm-kafka-0.8-plus http://blog.csdn.net/xeseo/article/details/1861 ...

  5. 【转】C# 解析JSON方法总结

    http://blog.csdn.net/jjhua/article/details/51438317 主要参考http://blog.csdn.NET/joyhen/article/details/ ...

  6. 如何在外网中访问自己在另一个局域网中的某个机器(SSH为例)

    UBUNTU 14.04 LTS 为例 如何在外网中访问自己在另一个局域网中的某个机器(SSH为例) 2013-05-01 16:02 2693人阅读 评论(0) 收藏 举报 情景描述: 计算机C1放 ...

  7. lua环境安装 转

    curl -R -O http://www.lua.org/ftp/lua-5.2.2.tar.gz tar zxf lua-5.2.2.tar.gz cd lua-5.2.2 make linux ...

  8. php--validate表单验证

    validate表单验证扩展规则 添加自定义检验(验证class) 获取html加入 class <input id="D_NUMBER" name="D_NUMB ...

  9. JQuery直接调用asp.net后台WebMethod方法

    利用JQuery的$.ajax()可以很方便的调用asp.net的后台方法.[WebMethod]   命名空间 1.无参数的方法调用, 注意:1.方法一定要静态方法,而且要有[WebMethod]的 ...

  10. [LeetCode]题解(python):088 Merge Sorted Array

    题目来源 https://leetcode.com/problems/merge-sorted-array/ Given two sorted integer arrays nums1 and num ...