http://www.lydsy.com/JudgeOnline/problem.php?id=2178

题意:给出n<=1000个圆,求这些圆的面积并


#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
#include <sstream>
using namespace std;
typedef long long ll;
#define pb push_back
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next)
inline int getint() { static int r, k; r=0,k=1; static char c; c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; } const double eps=1e-6, PI=acos(-1);
int dcmp(double x) { return abs(x)<eps?0:(x<0?-1:1); }
double sqr(double x) { return x*x; }
struct iP { double x, y; iP(double _x=0, double _y=0) : x(_x), y(_y) {} };
double dis(iP &a, iP &b) { return sqrt(sqr(a.x-b.x)+sqr(a.y-b.y)); }
struct iC {
iP p; double r;
iP getP(double d) { return iP(p.x+cos(d)*r, p.y+sin(d)*r); }
double areaH(double d) { return (d-sin(d))/2*sqr(r); }
};
double angle(iP &a, iP &b) {
static double x, y;
x=b.x-a.x; y=b.y-a.y;
return atan2(y, x);
}
void CCi(iC &a, iC &b, double &ang1, double &ang2) {
static double ang, d, R, r, da;
d=dis(a.p, b.p); //dbg(d);
ang=angle(a.p, b.p);
R=a.r; r=b.r; //dbg((sqr(R)+sqr(d)-sqr(r))/2/R/d);
da=acos((sqr(R)+sqr(d)-sqr(r))/2/R/d);
ang1=ang-da;
ang2=ang+da;
} const int N=1105;
iC a[N];
int n, cnt;
bool nok[N];
struct dat { double pos; int k; }b[N*5];
bool cmp(const dat &a, const dat &b) { return a.pos<b.pos; } int main() {
read(n);
for1(i, 1, n) scanf("%lf%lf%lf", &a[i].p.x, &a[i].p.y, &a[i].r);
for1(i, 1, n) for1(j, 1, n) if(!nok[j] && i!=j) {
double d=dis(a[i].p, a[j].p);
if(dcmp(a[j].r-a[i].r-d)>=0) { nok[i]=1; break; }
}
double ang1, ang2, PI2=PI*2, ans=0;
int sum=0;
iP A, B;
for1(i, 1, n) if(!nok[i]) {
cnt=0;
for1(j, 1, n) if(i!=j && !nok[j]) {
if(dcmp(dis(a[i].p, a[j].p)-a[i].r-a[j].r)>=0) continue;
CCi(a[i], a[j], ang1, ang2);
if(dcmp(ang1)<0) ang1+=PI2;
if(dcmp(ang2)<0) ang2+=PI2;
if(dcmp(ang1-ang2)>0) {
++cnt; b[cnt].pos=0; b[cnt].k=1;
++cnt; b[cnt].pos=ang2; b[cnt].k=-1;
++cnt; b[cnt].pos=ang1; b[cnt].k=1;
++cnt; b[cnt].pos=PI2; b[cnt].k=-1;
}
else {
++cnt; b[cnt].pos=ang1; b[cnt].k=1;
++cnt; b[cnt].pos=ang2; b[cnt].k=-1;
}
}
++cnt; b[cnt].pos=0; b[cnt].k=0;
++cnt; b[cnt].pos=PI2; b[cnt].k=0;
sort(b+1, b+1+cnt, cmp);
sum=0;
for1(j, 1, cnt-1) {
sum+=b[j].k;
if(!sum) {
ans+=a[i].areaH(b[j+1].pos-b[j].pos);
A=a[i].getP(b[j].pos);
B=a[i].getP(b[j+1].pos);
ans+=(A.x*B.y-A.y*B.x)/2;
}
}
}
printf("%.3f\n", ans);
return 0;
}

这题坑了我3h啊啊啊啊啊.....................................................我就一sb...

这题有多种解法,什么是辛普森积分我不知道QAQ因此这种做法是一个坑....以后再填..

首先得知道如何求这些圆的并:

圆的面积并=每个圆没有被覆盖的弧(弦那里算起)的面积和+所有相交圆被覆盖弧所组成的多边形(由弦做边)

正确性自己画图.....

因此题目变为先求没有被覆盖的弧(直接离散圆周长为线,具体操作请看上上一题...),然后算出每个圆未被覆盖(就是覆盖弧的弦以外的)的面积,然后再用叉积求出多边形面积(原理就是多边形的面积可以通过加加减减得到...)

然后就完了

好题!

【BZOJ】2178: 圆的面积并的更多相关文章

  1. BZOJ 2178: 圆的面积并 [辛普森积分 区间并]

    2178: 圆的面积并 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1740  Solved: 450[Submit][Status][Discus ...

  2. [BZOJ 2178] 圆的面积并 【Simpson积分】

    题目链接:BZOJ - 2178 题目分析 用Simpson积分,将圆按照 x 坐标分成连续的一些段,分别用 Simpson 求. 注意:1)Eps要设成 1e-13  2)要去掉被其他圆包含的圆. ...

  3. bzoj 2178 圆的面积并 —— 辛普森积分

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2178 先看到这篇博客:https://www.cnblogs.com/heisenberg- ...

  4. bzoj 2178 圆的面积并——辛普森积分

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2178 把包含的圆去掉.横坐标不相交的一段一段圆分开算.算辛普森的时候预处理 f( ) ,比如 ...

  5. bzoj 2178 圆的面积并【simpson积分】

    直接套simpson,f可以直接把圆排序后扫一遍所有圆,这样维护一个区间就可以避免空段. 然而一定要去掉被其他圆完全覆盖的圆,否则会TLE #include<iostream> #incl ...

  6. BZOJ 2178 圆的面积并 ——Simpson积分

    [题目分析] 史上最良心样例,史上最难调样例. Simpson积分硬上. 听说用long double 精度1e-10才能过. 但是double+1e-6居然过了. [代码] #include < ...

  7. BZOJ 2178: 圆的面积并 (辛普森积分)

    code #include <set> #include <cmath> #include <cstdio> #include <cstring> #i ...

  8. 【BZOJ】【2178】圆的面积并

    自适应辛普森积分 Orz Hzwer 辛普森真是个强大的东西……很多东西都能积= = 这题的正解看上去很鬼畜,至少我这种不会计算几何的渣渣是写不出来……(对圆的交点求图包,ans=凸包的面积+一堆弓形 ...

  9. [SPOJ-CIRU]The area of the union of circles/[BZOJ2178]圆的面积并

    [SPOJ-CIRU]The area of the union of circles/[BZOJ2178]圆的面积并 题目大意: 求\(n(n\le1000)\)个圆的面积并. 思路: 对于一个\( ...

随机推荐

  1. CPU供电维修

  2. Linux 磁盘的组成

    基本结构 磁道,扇区,柱面和磁头数 硬盘最基本的组成部分是由坚硬金属材料制成的涂以磁性介质的盘片,不同容量硬盘的盘片数不等.每个盘片有两面,都可记录信息. 每个磁道被分成许多扇形的区域,每个区域叫一个 ...

  3. 隐藏Nginx/Apache版本号的安全性与方法

    一.先介绍nginx隐藏版本号的方法. 搭建好nginx或者apache,为了安全起见我们都会隐藏他们的版本号,这边讲的是nginx的版本号,如果你也想隐藏apache的版本号,那请点前面的链接.请看 ...

  4. Python之property装饰器

    参考: http://www.cnblogs.com/lovemo1314/archive/2011/05/03/2035600.html http://joy2everyone.iteye.com/ ...

  5. windows添加和删除服务

    删除系统服务,记得一定要小心用.避免删错sc delete 服务名 加入服务: sc create 服务名 binPath= 路径 start= auto

  6. 【python】filter()

    来源:http://www.jb51.net/article/54316.htm filter函数: filter()函数可以对序列做过滤处理,就是说可以使用一个自定的函数过滤一个序列,把序列的每一项 ...

  7. discuz 学习

    一.Discuz首页“今日”“昨日”“欢迎新会员”等文字删除添加 搜索templeta/default/forum/discuz.htm   (使用非默认模版的请修改当前使用模版的discuz.htm ...

  8. Balance(poj 1837)

    题意:一个天平上有C个挂钩,第i个挂钩的位置为C[i],C[i] < 0表示该挂钩在原点的左边,C[i] > 0表示该挂钩在原点的右边:然后给出G个钩码的重量,问有多少种挂法使得天平保持平 ...

  9. 自动、手动同步FishEye, JIRA的联系人信息

    背景:在将FishEye和JIRA配置成共用用户信息,并且可以在二者之间自由切换,此时FishEye里的用户信息是不能更改的,只有更新了JIRA,然后让其同步至FishEye才行,如何进行设置呢? 答 ...

  10. .NET Framework 4.6的新东西

    我们知道.NET Framework 4.6即将随着Visual Studio 2015一同到来,目前依然是预览版.4.6和4,4.5,4.5.1和4.5.2是兼容的,也即安装4.6后会升级替代他们. ...