BZOJ3173 TJOI2013最长上升子序列(Treap+ZKW线段树)
Description
给定一个序列,初始为空。现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置。每插入一个数字,我们都想知道此时最长上升子序列长度是多少?
Input
第一行一个整数N,表示我们要将1到N插入序列中,接下是N个数字,第k个数字Xk,表示我们将k插入到位置Xk(0<=Xk<=k-1,1<=k<=N)
Output
N行,第i行表示i插入Xi位置后序列的最长上升子序列的长度是多少。
Sample Input
3
0 0 2
Sample Output
1
1
2
HINT
100%的数据 n<=100000
因为每一次加进来的都是最大的值,所以是不会更新其他的答案的,所以我们可以先把序列搞出来,离线乱搞搞就好了,没事就试了一下zkw线段树,发现还挺快的,不过还是要比树状数组慢不少。
/**************************************************************
Problem: 3173
User: geng4512
Language: C++
Result: Accepted
Time:644 ms
Memory:4712 kb
****************************************************************/
#include<cstdio>
#define MAXN 100005
struct node { int c[2], sz, rnd; } t[MAXN];
unsigned sd = 2333;
int Sz, a[MAXN], cnt, n, rt, mx[MAXN<<2], M, ans[MAXN];
inline int Max(int a, int b) { return a > b ? a : b; }
inline void GET(int &n) {
n = 0; char c;
do c = getchar(); while('0' > c || c > '9');
do n = n * 10 + c - '0', c = getchar(); while('0' <= c && c <= '9');
}
inline unsigned Ran() { return sd = sd * sd + 12580; }
inline void Upd(int k) { t[k].sz = t[t[k].c[0]].sz + t[t[k].c[1]].sz + 1; }
inline void Rot(int &k, bool f) {
int tmp = t[k].c[f]; t[k].c[f] = t[tmp].c[!f]; t[tmp].c[!f] = k;
Upd(k); Upd(tmp); k = tmp;
}
void Insert(int &k, int sz) {
if(!k) { k = ++ Sz; t[k].sz = 1; t[k].rnd = Ran(); return; }
++ t[k].sz;
bool f = t[t[k].c[0]].sz < sz;
Insert(t[k].c[f], sz - (t[t[k].c[0]].sz+1)*f);
if(t[k].rnd > t[t[k].c[f]].rnd) Rot(k, f);
}
void dfs(int u) {
if(!u) return;
dfs(t[u].c[0]);
a[++ cnt] = u;
dfs(t[u].c[1]);
}
namespace Seg {
void Insert(int x, int v) {
for(mx[x += M] = v, x >>= 1; x; x >>= 1)
mx[x] = Max(mx[x<<1], mx[x<<1|1]);
}
int Query(int r) {
int ans = 0;
for(r += M + 1; r ^ 1; r >>= 1)
if(r & 1) ans = Max(ans, mx[r^1]);
return ans;
}
}
int main() {
GET(n); int t;
for(int i = 1; i <= n; ++ i) {
GET(t);
Insert(rt, t);
}
dfs(rt);
for(M = 1; M < n + 2; M <<= 1);
for(int i = 1, tmp; i <= n; ++ i) {
tmp = Seg::Query(a[i]) + 1;
Seg::Insert(a[i], tmp);
ans[a[i]] = tmp;
}
for(int i = 1; i <= n; ++ i) {
ans[i] = Max(ans[i], ans[i-1]);
printf("%d\n", ans[i]);
}
return 0;
}
BZOJ3173 TJOI2013最长上升子序列(Treap+ZKW线段树)的更多相关文章
- bzoj 3173: [Tjoi2013]最长上升子序列【dp+线段树】
我也不知道为什么把题看成以插入点为结尾的最长生生子序列--还WA了好几次 先把这个序列最后的样子求出来,具体就是倒着做,用线段树维护点数,最开始所有点都是1,然后线段树上二分找到当前数的位置,把这个点 ...
- [BZOJ3173][Tjoi2013]最长上升子序列
[BZOJ3173][Tjoi2013]最长上升子序列 试题描述 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上 ...
- bzoj3173[Tjoi2013]最长上升子序列 平衡树+lis
3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2253 Solved: 1136[Submit][S ...
- bzoj3173: [Tjoi2013]最长上升子序列(树状数组+二分倒推)
3173: [Tjoi2013]最长上升子序列 题目:传送门 题解: 好题! 怎么说吧...是应该扇死自己...看错了两次题: 每次加一个数的时候,如果当前位置有数了,是要加到那个数的前面,而不是直 ...
- 【bzoj3173】[Tjoi2013]最长上升子序列 Treap
题目描述 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? 输入 第一行一个整数N,表示我们要 ...
- bzoj3173: [Tjoi2013]最长上升子序列(fhqtreap)
这题用fhqtreap可以在线. fhqtreap上维护以i结尾的最长上升子序列,数字按从小到大加入, 因为前面的数与新加入的数无关, 后面的数比新加入的数小, 所以新加入的数对原序列其他数的值没有影 ...
- bzoj千题计划316:bzoj3173: [Tjoi2013]最长上升子序列(二分+树状数组)
https://www.lydsy.com/JudgeOnline/problem.php?id=3173 插入的数是以递增的顺序插入的 这说明如果倒过来考虑,那么从最后一个插入的开始删除,不会对以某 ...
- BZOJ3173:[TJOI2013]最长上升子序列(Splay)
Description 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? Input 第一行一 ...
- 51nod 1376 最长递增子序列的数量(线段树)
51nod 1376 最长递增子序列的数量 数组A包含N个整数(可能包含相同的值).设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递 ...
随机推荐
- net.sf.json 时间格式的转化
后台代码 //后台代码 response.setCharacterEncoding("UTF-8"); JsonConfig jsonConfig = new JsonConfig ...
- java新项目的eclipse统一配置记录
1.new java file的模版 /** * @Title:${file_name} * @Copyright: Copyright (c) 2016 * @Description: * < ...
- MySQL 5.7 深度解析: 半同步复制技术
复制架构衍生史 在谈这个特性之前,我们先来看看MySQL的复制架构衍生史. MySQL的复制分为四种: 普通的replication,异步同步. 搭建简单,使用非常广泛,从mysql诞生之初,就产生了 ...
- C# byte数组转换成List<String>
byte[] bys=buffer; string[] AllDataList= Encoding.Default.GetString(bys).Split(Environment.NewLine. ...
- [华清远见]FPGA公益培训
本套视频教程为华清远见 网络公益培训活动,主讲人:姚远老师,华清远见高级讲师. ------------------------------------------------------------ ...
- Jmeter之逻辑控制器(Logic Controller)
Jmeter之逻辑控制器(Logic Controller) 前言: 1. Jmeter官网对逻辑控制器的解释是:“Logic Controllers determine the order in w ...
- VC++ 如何在显示对话框的时候,指定焦点控件!
很简单: 在你的CAddDlg类的OnInitDialog函数中加上你上面的代码GetDlgItem(IDC_EDIT1)->SetFocus();最后记得return FALSE; 其实,不知 ...
- jquery移动端日期插件
不说多的,直接看代码<!DOCTYPE html> <html lang="en"> <head> <meta charset=" ...
- 通过xcode或xcodebuild进行打包
在实际应用中需要用到debug的安装包,所以决定自己学习一下打包,打包过程中遇到了各种问题,下面记录了一下我在打包中用到的步骤,当然我还有很多不明白的地方,如果有不对的地方,希望可以大家可以指出 ...
- 把表里的数据转换为insert 语句
当表里面有数据时,怎么把表里的数据转换为insert 语句 (从别人那里看来的用SQLServer 2008 R2测试可用) CREATE PROC spGenInsertSQL @TableName ...