传送门

Description

给定一个序列,初始为空。现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置。每插入一个数字,我们都想知道此时最长上升子序列长度是多少?

Input

第一行一个整数N,表示我们要将1到N插入序列中,接下是N个数字,第k个数字Xk,表示我们将k插入到位置Xk(0<=Xk<=k-1,1<=k<=N)

Output

N行,第i行表示i插入Xi位置后序列的最长上升子序列的长度是多少。

Sample Input

3

0 0 2

Sample Output

1

1

2

HINT

100%的数据 n<=100000

因为每一次加进来的都是最大的值,所以是不会更新其他的答案的,所以我们可以先把序列搞出来,离线乱搞搞就好了,没事就试了一下zkw线段树,发现还挺快的,不过还是要比树状数组慢不少。

/**************************************************************
Problem: 3173
User: geng4512
Language: C++
Result: Accepted
Time:644 ms
Memory:4712 kb
****************************************************************/ #include<cstdio>
#define MAXN 100005
struct node { int c[2], sz, rnd; } t[MAXN];
unsigned sd = 2333;
int Sz, a[MAXN], cnt, n, rt, mx[MAXN<<2], M, ans[MAXN];
inline int Max(int a, int b) { return a > b ? a : b; }
inline void GET(int &n) {
n = 0; char c;
do c = getchar(); while('0' > c || c > '9');
do n = n * 10 + c - '0', c = getchar(); while('0' <= c && c <= '9');
}
inline unsigned Ran() { return sd = sd * sd + 12580; }
inline void Upd(int k) { t[k].sz = t[t[k].c[0]].sz + t[t[k].c[1]].sz + 1; }
inline void Rot(int &k, bool f) {
int tmp = t[k].c[f]; t[k].c[f] = t[tmp].c[!f]; t[tmp].c[!f] = k;
Upd(k); Upd(tmp); k = tmp;
}
void Insert(int &k, int sz) {
if(!k) { k = ++ Sz; t[k].sz = 1; t[k].rnd = Ran(); return; }
++ t[k].sz;
bool f = t[t[k].c[0]].sz < sz;
Insert(t[k].c[f], sz - (t[t[k].c[0]].sz+1)*f);
if(t[k].rnd > t[t[k].c[f]].rnd) Rot(k, f);
}
void dfs(int u) {
if(!u) return;
dfs(t[u].c[0]);
a[++ cnt] = u;
dfs(t[u].c[1]);
}
namespace Seg {
void Insert(int x, int v) {
for(mx[x += M] = v, x >>= 1; x; x >>= 1)
mx[x] = Max(mx[x<<1], mx[x<<1|1]);
}
int Query(int r) {
int ans = 0;
for(r += M + 1; r ^ 1; r >>= 1)
if(r & 1) ans = Max(ans, mx[r^1]);
return ans;
}
}
int main() {
GET(n); int t;
for(int i = 1; i <= n; ++ i) {
GET(t);
Insert(rt, t);
}
dfs(rt);
for(M = 1; M < n + 2; M <<= 1);
for(int i = 1, tmp; i <= n; ++ i) {
tmp = Seg::Query(a[i]) + 1;
Seg::Insert(a[i], tmp);
ans[a[i]] = tmp;
}
for(int i = 1; i <= n; ++ i) {
ans[i] = Max(ans[i], ans[i-1]);
printf("%d\n", ans[i]);
}
return 0;
}


BZOJ3173 TJOI2013最长上升子序列(Treap+ZKW线段树)的更多相关文章

  1. bzoj 3173: [Tjoi2013]最长上升子序列【dp+线段树】

    我也不知道为什么把题看成以插入点为结尾的最长生生子序列--还WA了好几次 先把这个序列最后的样子求出来,具体就是倒着做,用线段树维护点数,最开始所有点都是1,然后线段树上二分找到当前数的位置,把这个点 ...

  2. [BZOJ3173][Tjoi2013]最长上升子序列

    [BZOJ3173][Tjoi2013]最长上升子序列 试题描述 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上 ...

  3. bzoj3173[Tjoi2013]最长上升子序列 平衡树+lis

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2253  Solved: 1136[Submit][S ...

  4. bzoj3173: [Tjoi2013]最长上升子序列(树状数组+二分倒推)

    3173: [Tjoi2013]最长上升子序列 题目:传送门 题解:  好题! 怎么说吧...是应该扇死自己...看错了两次题: 每次加一个数的时候,如果当前位置有数了,是要加到那个数的前面,而不是直 ...

  5. 【bzoj3173】[Tjoi2013]最长上升子序列 Treap

    题目描述 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? 输入 第一行一个整数N,表示我们要 ...

  6. bzoj3173: [Tjoi2013]最长上升子序列(fhqtreap)

    这题用fhqtreap可以在线. fhqtreap上维护以i结尾的最长上升子序列,数字按从小到大加入, 因为前面的数与新加入的数无关, 后面的数比新加入的数小, 所以新加入的数对原序列其他数的值没有影 ...

  7. bzoj千题计划316:bzoj3173: [Tjoi2013]最长上升子序列(二分+树状数组)

    https://www.lydsy.com/JudgeOnline/problem.php?id=3173 插入的数是以递增的顺序插入的 这说明如果倒过来考虑,那么从最后一个插入的开始删除,不会对以某 ...

  8. BZOJ3173:[TJOI2013]最长上升子序列(Splay)

    Description 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? Input 第一行一 ...

  9. 51nod 1376 最长递增子序列的数量(线段树)

    51nod 1376 最长递增子序列的数量 数组A包含N个整数(可能包含相同的值).设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递 ...

随机推荐

  1. Ms sql 2000互转2005

    BCP导入导出数据.非常的方便.速度很快.--还原部分,指定强制还原(使用WITH MOVE指定文件还原,RELPACE由于版本不一样,所以要指定REPLACE,如果不指定REPLACE参数,会提示版 ...

  2. Spring day01笔记

    struts:web层,比较简单(ValueStack值栈,拦截器) hibernate:dao层,知识点杂 spring:service层,重要,讲多少用多少 --> [了解]   sprin ...

  3. winform客户端向web地址传参,怎样去接收参数。

    在web端定义js方法去接收客户端传递过来的参数,具体就是获取地址中?后的数据,各个参数用&分割,存储于数组中,获取. 具体如下: //定义获取地址中参数的方法 function GetReq ...

  4. java 枚举类 enum 总结

    枚举定义: enum是计算机编程语言中的一种数据类型.枚举类型:在实际问题中,有些变量的取值被限定在一个有限的范围内.例如,一个星期内只有七天,一年只有十二个月,一个班每周有六门课程等等.如果把这些量 ...

  5. mysql的从头到脚优化之服务器参数的调优

    一. 说到mysql的调优,有许多的点可以让我们去做,因此梳理下,一些调优的策略,今天只是总结下服务器参数的调优  其实说到,参数的调优,我的理解就是无非两点: 如果是Innodb的数据库,innod ...

  6. {POJ}{动态规划}{题目列表}

    动态规划与贪心相关: {HDU}{4739}{Zhuge Liang's Mines}{压缩DP} 题意:给定20个点坐标,求最多有多少个不相交(点也不相交)的正方形 思路:背包问题,求出所有的正方形 ...

  7. unity3d 射弹基础案例

    小白本来想学cocos2dx的,然而c++难学就算了,cocos2dx对新手来说简直坑爹,于是乎转战unity3d学习js,在写出第一个游戏后兴致高多了哎. 回顾一下编辑的过程:1.建立一个cube作 ...

  8. 深入理解js——隐式原型

    每个函数都有一个prototye(原型),而每个对象都有一个_proto_,可成为隐式原型. _proto_是一个隐藏的属性,javascript不希望开发者用到这个属性值,有的低版本浏览器甚至不支持 ...

  9. 如何实现能像windows 窗体一样改变大小的控件 Silverlight

    众所周知,我们可以将鼠标放在windows窗体的边框上,按住鼠标左键改变窗体大小.那么,在silverlight上如何实现呢? 1. 需要将改控件放置在canvas上. 2. 判断鼠标位置,然后将Ar ...

  10. 转载:PuTTY的自动登录设置

    转自:http://blog.segmentfault.com/zair/1190000000639516 PuTTY是Windows下非常好用的SSH远程登陆客户端.本文介绍两种自动登录的设置方法. ...